L11a434

From Knot Atlas
Jump to: navigation, search

L11a433.gif

L11a433

L11a435.gif

L11a435

Contents

L11a434.gif
(Knotscape image)
See the full Thistlethwaite Link Table (up to 11 crossings).

Visit L11a434 at Knotilus!

Brunnian link


Link Presentations

[edit Notes on L11a434's Link Presentations]

Planar diagram presentation X6172 X16,12,17,11 X8493 X2,18,3,17 X14,6,15,5 X18,7,19,8 X12,16,5,15 X20,14,21,13 X22,9,13,10 X10,21,11,22 X4,19,1,20
Gauss code {1, -4, 3, -11}, {5, -1, 6, -3, 9, -10, 2, -7}, {8, -5, 7, -2, 4, -6, 11, -8, 10, -9}
A Braid Representative
BraidPart1.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart3.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gif
BraidPart2.gifBraidPart1.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart3.gifBraidPart4.gifBraidPart3.gifBraidPart0.gifBraidPart3.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart3.gif
BraidPart0.gifBraidPart2.gifBraidPart1.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart1.gifBraidPart4.gifBraidPart1.gifBraidPart4.gifBraidPart1.gifBraidPart4.gifBraidPart1.gifBraidPart0.gifBraidPart1.gifBraidPart4.gif
BraidPart0.gifBraidPart0.gifBraidPart2.gifBraidPart1.gifBraidPart0.gifBraidPart3.gifBraidPart2.gifBraidPart0.gifBraidPart2.gifBraidPart0.gifBraidPart2.gifBraidPart3.gifBraidPart2.gifBraidPart3.gifBraidPart2.gifBraidPart0.gif
BraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart2.gifBraidPart1.gifBraidPart4.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart4.gifBraidPart3.gifBraidPart4.gifBraidPart0.gifBraidPart0.gif
BraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart2.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart4.gifBraidPart0.gifBraidPart0.gifBraidPart0.gif
A Morse Link Presentation L11a434 ML.gif

Polynomial invariants

Multivariable Alexander Polynomial (in u, v, w, ...) -\frac{(u-1) (v-1) (w-1) (v+w-1) (v w-v-w)}{\sqrt{u} v^{3/2} w^{3/2}} (db)
Jones polynomial q^6-4 q^5+8 q^4-14 q^3+21 q^2-22 q+24-20 q^{-1} +16 q^{-2} -9 q^{-3} +4 q^{-4} - q^{-5} (db)
Signature 0 (db)
HOMFLY-PT polynomial -z^6 a^{-2} -z^6+2 a^2 z^4-2 z^4 a^{-2} +z^4 a^{-4} -a^4 z^2+a^2 z^2-3 z^2 a^{-2} +z^2 a^{-4} +2 z^2+a^2 z^{-2} + a^{-2} z^{-2} -2 z^{-2} (db)
Kauffman polynomial 2 z^{10} a^{-2} +2 z^{10}+7 a z^9+13 z^9 a^{-1} +6 z^9 a^{-3} +10 a^2 z^8+14 z^8 a^{-2} +7 z^8 a^{-4} +17 z^8+8 a^3 z^7-a z^7-20 z^7 a^{-1} -7 z^7 a^{-3} +4 z^7 a^{-5} +4 a^4 z^6-14 a^2 z^6-46 z^6 a^{-2} -18 z^6 a^{-4} +z^6 a^{-6} -45 z^6+a^5 z^5-11 a^3 z^5-12 a z^5+3 z^5 a^{-1} -7 z^5 a^{-3} -10 z^5 a^{-5} -5 a^4 z^4+8 a^2 z^4+48 z^4 a^{-2} +16 z^4 a^{-4} -2 z^4 a^{-6} +43 z^4-a^5 z^3+5 a^3 z^3+7 a z^3+5 z^3 a^{-1} +10 z^3 a^{-3} +6 z^3 a^{-5} +2 a^4 z^2-4 a^2 z^2-20 z^2 a^{-2} -6 z^2 a^{-4} -20 z^2+1-2 a z^{-1} -2 a^{-1} z^{-1} +a^2 z^{-2} + a^{-2} z^{-2} +2 z^{-2} (db)

Khovanov Homology

The coefficients of the monomials t^rq^j are shown, along with their alternating sums \chi (fixed j, alternation over r).   
\ r
  \  
j \
-5-4-3-2-10123456χ
13           11
11          3 -3
9         51 4
7        93  -6
5       125   7
3      109    -1
1     1412     2
-1    1014      4
-3   610       -4
-5  310        7
-7 16         -5
-9 3          3
-111           -1
Integral Khovanov Homology

(db, data source)

  
\dim{\mathcal G}_{2r+i}\operatorname{KH}^r_{\mathbb Z} i=-1 i=1
r=-5 {\mathbb Z}
r=-4 {\mathbb Z}^{3}\oplus{\mathbb Z}_2 {\mathbb Z}
r=-3 {\mathbb Z}^{6}\oplus{\mathbb Z}_2^{3} {\mathbb Z}^{3}
r=-2 {\mathbb Z}^{10}\oplus{\mathbb Z}_2^{6} {\mathbb Z}^{6}
r=-1 {\mathbb Z}^{10}\oplus{\mathbb Z}_2^{10} {\mathbb Z}^{10}
r=0 {\mathbb Z}^{14}\oplus{\mathbb Z}_2^{10} {\mathbb Z}^{14}
r=1 {\mathbb Z}^{12}\oplus{\mathbb Z}_2^{10} {\mathbb Z}^{10}
r=2 {\mathbb Z}^{9}\oplus{\mathbb Z}_2^{12} {\mathbb Z}^{12}
r=3 {\mathbb Z}^{5}\oplus{\mathbb Z}_2^{9} {\mathbb Z}^{9}
r=4 {\mathbb Z}^{3}\oplus{\mathbb Z}_2^{5} {\mathbb Z}^{5}
r=5 {\mathbb Z}\oplus{\mathbb Z}_2^{3} {\mathbb Z}^{3}
r=6 {\mathbb Z}_2 {\mathbb Z}

Computer Talk

Much of the above data can be recomputed by Mathematica using the package KnotTheory`. See A Sample KnotTheory` Session.

Modifying This Page

Read me first: Modifying Knot Pages

See/edit the Link Page master template (intermediate).

See/edit the Link_Splice_Base (expert).

Back to the top.

L11a433.gif

L11a433

L11a435.gif

L11a435