L11a464

From Knot Atlas
Jump to: navigation, search

L11a463.gif

L11a463

L11a465.gif

L11a465

Contents

L11a464.gif
(Knotscape image)
See the full Thistlethwaite Link Table (up to 11 crossings).

Visit L11a464 at Knotilus!


Link Presentations

[edit Notes on L11a464's Link Presentations]

Planar diagram presentation X6172 X12,7,13,8 X4,13,1,14 X16,6,17,5 X8493 X20,9,21,10 X10,19,11,20 X22,18,15,17 X18,22,19,21 X14,16,5,15 X2,12,3,11
Gauss code {1, -11, 5, -3}, {10, -4, 8, -9, 7, -6, 9, -8}, {4, -1, 2, -5, 6, -7, 11, -2, 3, -10}
A Braid Representative
BraidPart1.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart3.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gif
BraidPart2.gifBraidPart1.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart3.gifBraidPart4.gifBraidPart3.gifBraidPart0.gifBraidPart3.gifBraidPart0.gifBraidPart0.gifBraidPart3.gif
BraidPart0.gifBraidPart2.gifBraidPart1.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart1.gifBraidPart4.gifBraidPart1.gifBraidPart4.gifBraidPart1.gifBraidPart4.gifBraidPart1.gifBraidPart1.gifBraidPart4.gif
BraidPart0.gifBraidPart0.gifBraidPart2.gifBraidPart1.gifBraidPart0.gifBraidPart3.gifBraidPart2.gifBraidPart3.gifBraidPart2.gifBraidPart0.gifBraidPart2.gifBraidPart3.gifBraidPart2.gifBraidPart2.gifBraidPart0.gif
BraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart2.gifBraidPart1.gifBraidPart4.gifBraidPart0.gifBraidPart4.gifBraidPart3.gifBraidPart0.gifBraidPart0.gifBraidPart4.gifBraidPart0.gifBraidPart0.gifBraidPart0.gif
BraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart2.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart4.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gif
A Morse Link Presentation L11a464 ML.gif

Polynomial invariants

Multivariable Alexander Polynomial (in u, v, w, ...) -\frac{2 (u-1) (v-1) (w-1)^3}{\sqrt{u} \sqrt{v} w^{3/2}} (db)
Jones polynomial q^6-5 q^5+10 q^4-14 q^3+19 q^2-20 q+21-16 q^{-1} +12 q^{-2} -6 q^{-3} +3 q^{-4} - q^{-5} (db)
Signature 0 (db)
HOMFLY-PT polynomial -z^6 a^{-2} -z^6+2 a^2 z^4-z^4 a^{-2} +z^4 a^{-4} -2 z^4-a^4 z^2+4 a^2 z^2+2 z^2 a^{-2} -5 z^2-a^4+4 a^2+4 a^{-2} - a^{-4} -6+a^2 z^{-2} + a^{-2} z^{-2} -2 z^{-2} (db)
Kauffman polynomial z^6 a^{-6} -z^4 a^{-6} +5 z^7 a^{-5} +a^5 z^5-10 z^5 a^{-5} -2 a^5 z^3+2 z^3 a^{-5} +a^5 z+z a^{-5} +9 z^8 a^{-4} +3 a^4 z^6-22 z^6 a^{-4} -6 a^4 z^4+11 z^4 a^{-4} +5 a^4 z^2+z^2 a^{-4} -2 a^4-2 a^{-4} +7 z^9 a^{-3} +4 a^3 z^7-11 z^7 a^{-3} -3 a^3 z^5-2 z^5 a^{-3} -3 a^3 z^3+z^3 a^{-3} +3 a^3 z+3 z a^{-3} +2 z^{10} a^{-2} +4 a^2 z^8+11 z^8 a^{-2} +3 a^2 z^6-33 z^6 a^{-2} -17 a^2 z^4+16 z^4 a^{-2} +18 a^2 z^2+10 z^2 a^{-2} +a^2 z^{-2} + a^{-2} z^{-2} -8 a^2-8 a^{-2} +4 a z^9+11 z^9 a^{-1} -20 z^7 a^{-1} -3 a z^5+9 z^5 a^{-1} -a z^3-z^3 a^{-1} +4 a z+4 z a^{-1} -2 a z^{-1} -2 a^{-1} z^{-1} +2 z^{10}+6 z^8-10 z^6-7 z^4+22 z^2+2 z^{-2} -11 (db)

Khovanov Homology

The coefficients of the monomials t^rq^j are shown, along with their alternating sums \chi (fixed j, alternation over r).   
\ r
  \  
j \
-5-4-3-2-10123456χ
13           11
11          4 -4
9         61 5
7        84  -4
5       116   5
3      98    -1
1     1211     1
-1    813      5
-3   48       -4
-5  28        6
-7 14         -3
-9 2          2
-111           -1
Integral Khovanov Homology

(db, data source)

  
\dim{\mathcal G}_{2r+i}\operatorname{KH}^r_{\mathbb Z} i=-1 i=1
r=-5 {\mathbb Z}
r=-4 {\mathbb Z}^{2}\oplus{\mathbb Z}_2 {\mathbb Z}
r=-3 {\mathbb Z}^{4}\oplus{\mathbb Z}_2^{2} {\mathbb Z}^{2}
r=-2 {\mathbb Z}^{8}\oplus{\mathbb Z}_2^{4} {\mathbb Z}^{4}
r=-1 {\mathbb Z}^{8}\oplus{\mathbb Z}_2^{8} {\mathbb Z}^{8}
r=0 {\mathbb Z}^{13}\oplus{\mathbb Z}_2^{8} {\mathbb Z}^{12}
r=1 {\mathbb Z}^{11}\oplus{\mathbb Z}_2^{9} {\mathbb Z}^{9}
r=2 {\mathbb Z}^{8}\oplus{\mathbb Z}_2^{11} {\mathbb Z}^{11}
r=3 {\mathbb Z}^{6}\oplus{\mathbb Z}_2^{8} {\mathbb Z}^{8}
r=4 {\mathbb Z}^{4}\oplus{\mathbb Z}_2^{6} {\mathbb Z}^{6}
r=5 {\mathbb Z}\oplus{\mathbb Z}_2^{4} {\mathbb Z}^{4}
r=6 {\mathbb Z}_2 {\mathbb Z}

Computer Talk

Much of the above data can be recomputed by Mathematica using the package KnotTheory`. See A Sample KnotTheory` Session.

Modifying This Page

Read me first: Modifying Knot Pages

See/edit the Link Page master template (intermediate).

See/edit the Link_Splice_Base (expert).

Back to the top.

L11a463.gif

L11a463

L11a465.gif

L11a465