# L11a464

## Contents (Knotscape image) See the full Thistlethwaite Link Table (up to 11 crossings). Visit L11a464 at Knotilus!

### Polynomial invariants

 Multivariable Alexander Polynomial (in $u$, $v$, $w$, ...) $-\frac{2 (u-1) (v-1) (w-1)^3}{\sqrt{u} \sqrt{v} w^{3/2}}$ (db) Jones polynomial $q^6-5 q^5+10 q^4-14 q^3+19 q^2-20 q+21-16 q^{-1} +12 q^{-2} -6 q^{-3} +3 q^{-4} - q^{-5}$ (db) Signature 0 (db) HOMFLY-PT polynomial $-z^6 a^{-2} -z^6+2 a^2 z^4-z^4 a^{-2} +z^4 a^{-4} -2 z^4-a^4 z^2+4 a^2 z^2+2 z^2 a^{-2} -5 z^2-a^4+4 a^2+4 a^{-2} - a^{-4} -6+a^2 z^{-2} + a^{-2} z^{-2} -2 z^{-2}$ (db) Kauffman polynomial $z^6 a^{-6} -z^4 a^{-6} +5 z^7 a^{-5} +a^5 z^5-10 z^5 a^{-5} -2 a^5 z^3+2 z^3 a^{-5} +a^5 z+z a^{-5} +9 z^8 a^{-4} +3 a^4 z^6-22 z^6 a^{-4} -6 a^4 z^4+11 z^4 a^{-4} +5 a^4 z^2+z^2 a^{-4} -2 a^4-2 a^{-4} +7 z^9 a^{-3} +4 a^3 z^7-11 z^7 a^{-3} -3 a^3 z^5-2 z^5 a^{-3} -3 a^3 z^3+z^3 a^{-3} +3 a^3 z+3 z a^{-3} +2 z^{10} a^{-2} +4 a^2 z^8+11 z^8 a^{-2} +3 a^2 z^6-33 z^6 a^{-2} -17 a^2 z^4+16 z^4 a^{-2} +18 a^2 z^2+10 z^2 a^{-2} +a^2 z^{-2} + a^{-2} z^{-2} -8 a^2-8 a^{-2} +4 a z^9+11 z^9 a^{-1} -20 z^7 a^{-1} -3 a z^5+9 z^5 a^{-1} -a z^3-z^3 a^{-1} +4 a z+4 z a^{-1} -2 a z^{-1} -2 a^{-1} z^{-1} +2 z^{10}+6 z^8-10 z^6-7 z^4+22 z^2+2 z^{-2} -11$ (db)

### Khovanov Homology

The coefficients of the monomials $t^rq^j$ are shown, along with their alternating sums $\chi$ (fixed $j$, alternation over $r$).
 \ r \ j \
-5-4-3-2-10123456χ
13           11
11          4 -4
9         61 5
7        84  -4
5       116   5
3      98    -1
1     1211     1
-1    813      5
-3   48       -4
-5  28        6
-7 14         -3
-9 2          2
-111           -1
Integral Khovanov Homology $\dim{\mathcal G}_{2r+i}\operatorname{KH}^r_{\mathbb Z}$ $i=-1$ $i=1$ $r=-5$ ${\mathbb Z}$ $r=-4$ ${\mathbb Z}^{2}\oplus{\mathbb Z}_2$ ${\mathbb Z}$ $r=-3$ ${\mathbb Z}^{4}\oplus{\mathbb Z}_2^{2}$ ${\mathbb Z}^{2}$ $r=-2$ ${\mathbb Z}^{8}\oplus{\mathbb Z}_2^{4}$ ${\mathbb Z}^{4}$ $r=-1$ ${\mathbb Z}^{8}\oplus{\mathbb Z}_2^{8}$ ${\mathbb Z}^{8}$ $r=0$ ${\mathbb Z}^{13}\oplus{\mathbb Z}_2^{8}$ ${\mathbb Z}^{12}$ $r=1$ ${\mathbb Z}^{11}\oplus{\mathbb Z}_2^{9}$ ${\mathbb Z}^{9}$ $r=2$ ${\mathbb Z}^{8}\oplus{\mathbb Z}_2^{11}$ ${\mathbb Z}^{11}$ $r=3$ ${\mathbb Z}^{6}\oplus{\mathbb Z}_2^{8}$ ${\mathbb Z}^{8}$ $r=4$ ${\mathbb Z}^{4}\oplus{\mathbb Z}_2^{6}$ ${\mathbb Z}^{6}$ $r=5$ ${\mathbb Z}\oplus{\mathbb Z}_2^{4}$ ${\mathbb Z}^{4}$ $r=6$ ${\mathbb Z}_2$ ${\mathbb Z}$

### Computer Talk

Much of the above data can be recomputed by Mathematica using the package KnotTheory. See A Sample KnotTheory Session.