L11a465

From Knot Atlas
Jump to: navigation, search

L11a464.gif

L11a464

L11a466.gif

L11a466

Contents

L11a465.gif
(Knotscape image)
See the full Thistlethwaite Link Table (up to 11 crossings).

Visit L11a465 at Knotilus!


Link Presentations

[edit Notes on L11a465's Link Presentations]

Planar diagram presentation X6172 X10,4,11,3 X12,8,13,7 X20,13,21,14 X16,10,17,9 X8,16,9,15 X22,18,15,17 X18,22,19,21 X14,19,5,20 X2536 X4,12,1,11
Gauss code {1, -10, 2, -11}, {6, -5, 7, -8, 9, -4, 8, -7}, {10, -1, 3, -6, 5, -2, 11, -3, 4, -9}
A Braid Representative
BraidPart1.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart3.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gif
BraidPart2.gifBraidPart1.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart1.gifBraidPart4.gifBraidPart0.gifBraidPart0.gifBraidPart1.gifBraidPart1.gifBraidPart0.gifBraidPart1.gifBraidPart0.gifBraidPart1.gifBraidPart1.gif
BraidPart0.gifBraidPart2.gifBraidPart1.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart3.gifBraidPart2.gifBraidPart3.gifBraidPart0.gifBraidPart3.gifBraidPart2.gifBraidPart2.gifBraidPart3.gifBraidPart2.gifBraidPart3.gifBraidPart2.gifBraidPart2.gif
BraidPart0.gifBraidPart0.gifBraidPart2.gifBraidPart1.gifBraidPart0.gifBraidPart3.gifBraidPart4.gifBraidPart0.gifBraidPart4.gifBraidPart1.gifBraidPart4.gifBraidPart0.gifBraidPart0.gifBraidPart4.gifBraidPart3.gifBraidPart4.gifBraidPart0.gifBraidPart0.gif
BraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart2.gifBraidPart1.gifBraidPart4.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart2.gifBraidPart3.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart4.gifBraidPart0.gifBraidPart0.gifBraidPart0.gif
BraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart2.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart4.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gif
A Morse Link Presentation L11a465 ML.gif

Polynomial invariants

Multivariable Alexander Polynomial (in u, v, w, ...) \frac{(t(1)-1) (t(2)-1) (t(3)-1) \left(2 t(3)^2-3 t(3)+2\right)}{\sqrt{t(1)} \sqrt{t(2)} t(3)^{3/2}} (db)
Jones polynomial -q^8+4 q^7-9 q^6+13 q^5-16 q^4+19 q^3+ q^{-3} -17 q^2-2 q^{-2} +15 q+6 q^{-1} -9 (db)
Signature 2 (db)
HOMFLY-PT polynomial -z^4 a^{-6} -z^2 a^{-6} - a^{-6} +z^6 a^{-4} +2 z^4 a^{-4} +2 z^2 a^{-4} + a^{-4} +z^6 a^{-2} +2 z^4 a^{-2} +a^2 z^2+3 z^2 a^{-2} +a^2 z^{-2} + a^{-2} z^{-2} +2 a^2+3 a^{-2} -2 z^4-5 z^2-2 z^{-2} -5 (db)
Kauffman polynomial z^{10} a^{-2} +z^{10} a^{-4} +2 z^9 a^{-1} +7 z^9 a^{-3} +5 z^9 a^{-5} +5 z^8 a^{-2} +12 z^8 a^{-4} +9 z^8 a^{-6} +2 z^8+2 a z^7+z^7 a^{-1} -11 z^7 a^{-3} -2 z^7 a^{-5} +8 z^7 a^{-7} +a^2 z^6-9 z^6 a^{-2} -31 z^6 a^{-4} -18 z^6 a^{-6} +4 z^6 a^{-8} +z^6-5 a z^5-5 z^5 a^{-1} +8 z^5 a^{-3} -7 z^5 a^{-5} -14 z^5 a^{-7} +z^5 a^{-9} -4 a^2 z^4+31 z^4 a^{-4} +15 z^4 a^{-6} -5 z^4 a^{-8} -15 z^4+2 a z^3-4 z^3 a^{-1} -5 z^3 a^{-3} +8 z^3 a^{-5} +6 z^3 a^{-7} -z^3 a^{-9} +6 a^2 z^2+7 z^2 a^{-2} -13 z^2 a^{-4} -7 z^2 a^{-6} +19 z^2+3 a z+7 z a^{-1} +3 z a^{-3} -3 z a^{-5} -2 z a^{-7} -4 a^2-6 a^{-2} +2 a^{-4} +2 a^{-6} -9-2 a z^{-1} -2 a^{-1} z^{-1} +a^2 z^{-2} + a^{-2} z^{-2} +2 z^{-2} (db)

Khovanov Homology

The coefficients of the monomials t^rq^j are shown, along with their alternating sums \chi (fixed j, alternation over r).   
\ r
  \  
j \
-4-3-2-101234567χ
17           1-1
15          3 3
13         61 -5
11        73  4
9       96   -3
7      107    3
5     79     2
3    810      -2
1   511       6
-1  14        -3
-3 15         4
-5 1          -1
-71           1
Integral Khovanov Homology

(db, data source)

  
\dim{\mathcal G}_{2r+i}\operatorname{KH}^r_{\mathbb Z} i=1 i=3
r=-4 {\mathbb Z}
r=-3 {\mathbb Z}\oplus{\mathbb Z}_2 {\mathbb Z}
r=-2 {\mathbb Z}^{5}\oplus{\mathbb Z}_2 {\mathbb Z}
r=-1 {\mathbb Z}^{4}\oplus{\mathbb Z}_2^{5} {\mathbb Z}^{5}
r=0 {\mathbb Z}^{11}\oplus{\mathbb Z}_2^{4} {\mathbb Z}^{8}
r=1 {\mathbb Z}^{10}\oplus{\mathbb Z}_2^{7} {\mathbb Z}^{7}
r=2 {\mathbb Z}^{9}\oplus{\mathbb Z}_2^{10} {\mathbb Z}^{10}
r=3 {\mathbb Z}^{7}\oplus{\mathbb Z}_2^{9} {\mathbb Z}^{9}
r=4 {\mathbb Z}^{6}\oplus{\mathbb Z}_2^{7} {\mathbb Z}^{7}
r=5 {\mathbb Z}^{3}\oplus{\mathbb Z}_2^{6} {\mathbb Z}^{6}
r=6 {\mathbb Z}\oplus{\mathbb Z}_2^{3} {\mathbb Z}^{3}
r=7 {\mathbb Z}_2 {\mathbb Z}

Computer Talk

Much of the above data can be recomputed by Mathematica using the package KnotTheory`. See A Sample KnotTheory` Session.

Modifying This Page

Read me first: Modifying Knot Pages

See/edit the Link Page master template (intermediate).

See/edit the Link_Splice_Base (expert).

Back to the top.

L11a464.gif

L11a464

L11a466.gif

L11a466