From Knot Atlas
Jump to: navigation, search






(Knotscape image)
See the full Thistlethwaite Link Table (up to 11 crossings).

Visit L11a470 at Knotilus!

Link Presentations

[edit Notes on L11a470's Link Presentations]

Planar diagram presentation X6172 X10,3,11,4 X18,11,19,12 X8,17,9,18 X16,7,17,8 X14,15,5,16 X22,19,15,20 X20,14,21,13 X12,22,13,21 X2536 X4,9,1,10
Gauss code {1, -10, 2, -11}, {6, -5, 4, -3, 7, -8, 9, -7}, {10, -1, 5, -4, 11, -2, 3, -9, 8, -6}
A Braid Representative
A Morse Link Presentation L11a470 ML.gif

Polynomial invariants

Multivariable Alexander Polynomial (in u, v, w, ...) -\frac{(w-1) \left(2 u v^2 w^2-2 u v^2 w-3 u v w^2+3 u v w-u v+u w^2-2 u w+u+v^2 w^3-2 v^2 w^2+v^2 w-v w^3+3 v w^2-3 v w-2 w^2+2 w\right)}{\sqrt{u} v w^2} (db)
Jones polynomial 1-3 q^{-1} +8 q^{-2} -12 q^{-3} +17 q^{-4} -19 q^{-5} +20 q^{-6} -16 q^{-7} +13 q^{-8} -7 q^{-9} +3 q^{-10} - q^{-11} (db)
Signature -4 (db)
HOMFLY-PT polynomial -z^2 a^{10}-2 a^{10}+3 z^4 a^8+8 z^2 a^8+a^8 z^{-2} +6 a^8-2 z^6 a^6-7 z^4 a^6-10 z^2 a^6-2 a^6 z^{-2} -8 a^6-z^6 a^4-z^4 a^4+3 z^2 a^4+a^4 z^{-2} +3 a^4+z^4 a^2+2 z^2 a^2+a^2 (db)
Kauffman polynomial a^{13} z^5-2 a^{13} z^3+a^{13} z+3 a^{12} z^6-5 a^{12} z^4+3 a^{12} z^2-a^{12}+5 a^{11} z^7-6 a^{11} z^5+a^{11} z^3+a^{11} z+6 a^{10} z^8-7 a^{10} z^6+4 a^{10} z^4-2 a^{10} z^2+4 a^9 z^9+3 a^9 z^7-15 a^9 z^5+14 a^9 z^3-3 a^9 z+a^8 z^{10}+14 a^8 z^8-38 a^8 z^6+46 a^8 z^4-31 a^8 z^2-a^8 z^{-2} +10 a^8+8 a^7 z^9-7 a^7 z^7-12 a^7 z^5+19 a^7 z^3-10 a^7 z+2 a^7 z^{-1} +a^6 z^{10}+13 a^6 z^8-40 a^6 z^6+48 a^6 z^4-36 a^6 z^2-2 a^6 z^{-2} +14 a^6+4 a^5 z^9-2 a^5 z^7-11 a^5 z^5+12 a^5 z^3-7 a^5 z+2 a^5 z^{-1} +5 a^4 z^8-11 a^4 z^6+8 a^4 z^4-7 a^4 z^2-a^4 z^{-2} +5 a^4+3 a^3 z^7-7 a^3 z^5+4 a^3 z^3+a^2 z^6-3 a^2 z^4+3 a^2 z^2-a^2 (db)

Khovanov Homology

The coefficients of the monomials t^rq^j are shown, along with their alternating sums \chi (fixed j, alternation over r).   
\ r
j \
1           11
-1          2 -2
-3         61 5
-5        73  -4
-7       105   5
-9      108    -2
-11     109     1
-13    711      4
-15   69       -3
-17  28        6
-19 15         -4
-21 2          2
-231           -1
Integral Khovanov Homology

(db, data source)

\dim{\mathcal G}_{2r+i}\operatorname{KH}^r_{\mathbb Z} i=-5 i=-3
r=-9 {\mathbb Z}
r=-8 {\mathbb Z}^{2}\oplus{\mathbb Z}_2 {\mathbb Z}
r=-7 {\mathbb Z}^{5}\oplus{\mathbb Z}_2^{2} {\mathbb Z}^{2}
r=-6 {\mathbb Z}^{8}\oplus{\mathbb Z}_2^{5} {\mathbb Z}^{6}
r=-5 {\mathbb Z}^{9}\oplus{\mathbb Z}_2^{7} {\mathbb Z}^{7}
r=-4 {\mathbb Z}^{11}\oplus{\mathbb Z}_2^{9} {\mathbb Z}^{10}
r=-3 {\mathbb Z}^{9}\oplus{\mathbb Z}_2^{10} {\mathbb Z}^{10}
r=-2 {\mathbb Z}^{8}\oplus{\mathbb Z}_2^{9} {\mathbb Z}^{10}
r=-1 {\mathbb Z}^{5}\oplus{\mathbb Z}_2^{7} {\mathbb Z}^{7}
r=0 {\mathbb Z}^{3}\oplus{\mathbb Z}_2^{5} {\mathbb Z}^{6}
r=1 {\mathbb Z}\oplus{\mathbb Z}_2^{2} {\mathbb Z}^{2}
r=2 {\mathbb Z}_2 {\mathbb Z}

Computer Talk

Much of the above data can be recomputed by Mathematica using the package KnotTheory`. See A Sample KnotTheory` Session.

Modifying This Page

Read me first: Modifying Knot Pages

See/edit the Link Page master template (intermediate).

See/edit the Link_Splice_Base (expert).

Back to the top.