L11a484

From Knot Atlas
Jump to: navigation, search

L11a483.gif

L11a483

L11a485.gif

L11a485

Contents

L11a484.gif
(Knotscape image)
See the full Thistlethwaite Link Table (up to 11 crossings).

Visit L11a484 at Knotilus!


Link Presentations

[edit Notes on L11a484's Link Presentations]

Planar diagram presentation X6172 X14,7,15,8 X4,15,1,16 X12,6,13,5 X8493 X16,10,17,9 X22,17,19,18 X20,12,21,11 X10,20,11,19 X18,21,5,22 X2,14,3,13
Gauss code {1, -11, 5, -3}, {9, -8, 10, -7}, {4, -1, 2, -5, 6, -9, 8, -4, 11, -2, 3, -6, 7, -10}
A Braid Representative
BraidPart3.gifBraidPart0.gifBraidPart3.gifBraidPart0.gifBraidPart3.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gif
BraidPart4.gifBraidPart1.gifBraidPart4.gifBraidPart1.gifBraidPart4.gifBraidPart1.gifBraidPart0.gifBraidPart1.gifBraidPart1.gifBraidPart0.gifBraidPart1.gif
BraidPart0.gifBraidPart2.gifBraidPart0.gifBraidPart2.gifBraidPart0.gifBraidPart2.gifBraidPart3.gifBraidPart2.gifBraidPart2.gifBraidPart3.gifBraidPart2.gif
BraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart4.gifBraidPart0.gifBraidPart0.gifBraidPart4.gifBraidPart0.gif
A Morse Link Presentation L11a484 ML.gif

Polynomial invariants

Multivariable Alexander Polynomial (in u, v, w, ...) -\frac{(u-1) (v-1) (w-1)^3 \left(w^2+1\right)}{\sqrt{u} \sqrt{v} w^{5/2}} (db)
Jones polynomial q^7-4 q^6+8 q^5-13 q^4- q^{-4} +18 q^3+4 q^{-3} -20 q^2-8 q^{-2} +21 q+14 q^{-1} -16 (db)
Signature 2 (db)
HOMFLY-PT polynomial z^6 a^{-4} +3 z^4 a^{-4} +2 z^2 a^{-4} -z^8 a^{-2} -5 z^6 a^{-2} -a^2 z^4-9 z^4 a^{-2} -2 a^2 z^2-6 z^2 a^{-2} +a^2 z^{-2} + a^{-2} z^{-2} +2 z^6+7 z^4+6 z^2-2 z^{-2} (db)
Kauffman polynomial z^4 a^{-8} +4 z^5 a^{-7} -2 z^3 a^{-7} +8 z^6 a^{-6} -7 z^4 a^{-6} +z^2 a^{-6} +11 z^7 a^{-5} -13 z^5 a^{-5} +4 z^3 a^{-5} -z a^{-5} +12 z^8 a^{-4} -20 z^6 a^{-4} +12 z^4 a^{-4} -5 z^2 a^{-4} +8 z^9 a^{-3} +a^3 z^7-6 z^7 a^{-3} -3 a^3 z^5-18 z^5 a^{-3} +3 a^3 z^3+20 z^3 a^{-3} -a^3 z-4 z a^{-3} +2 z^{10} a^{-2} +4 a^2 z^8+18 z^8 a^{-2} -14 a^2 z^6-67 z^6 a^{-2} +16 a^2 z^4+66 z^4 a^{-2} -8 a^2 z^2-21 z^2 a^{-2} +a^2 z^{-2} + a^{-2} z^{-2} +5 a z^9+13 z^9 a^{-1} -12 a z^7-30 z^7 a^{-1} -a z^5+z^5 a^{-1} +12 a z^3+23 z^3 a^{-1} -4 a z-6 z a^{-1} -2 a z^{-1} -2 a^{-1} z^{-1} +2 z^{10}+10 z^8-53 z^6+62 z^4-23 z^2+2 z^{-2} +1 (db)

Khovanov Homology

The coefficients of the monomials t^rq^j are shown, along with their alternating sums \chi (fixed j, alternation over r).   
\ r
  \  
j \
-5-4-3-2-10123456χ
15           11
13          3 -3
11         51 4
9        83  -5
7       105   5
5      108    -2
3     1110     1
1    914      5
-1   57       -2
-3  39        6
-5 15         -4
-7 3          3
-91           -1
Integral Khovanov Homology

(db, data source)

  
\dim{\mathcal G}_{2r+i}\operatorname{KH}^r_{\mathbb Z} i=1 i=3
r=-5 {\mathbb Z}
r=-4 {\mathbb Z}^{3}\oplus{\mathbb Z}_2 {\mathbb Z}
r=-3 {\mathbb Z}^{5}\oplus{\mathbb Z}_2^{3} {\mathbb Z}^{3}
r=-2 {\mathbb Z}^{9}\oplus{\mathbb Z}_2^{5} {\mathbb Z}^{5}
r=-1 {\mathbb Z}^{7}\oplus{\mathbb Z}_2^{9} {\mathbb Z}^{9}
r=0 {\mathbb Z}^{14}\oplus{\mathbb Z}_2^{7} {\mathbb Z}^{11}
r=1 {\mathbb Z}^{10}\oplus{\mathbb Z}_2^{10} {\mathbb Z}^{10}
r=2 {\mathbb Z}^{8}\oplus{\mathbb Z}_2^{10} {\mathbb Z}^{10}
r=3 {\mathbb Z}^{5}\oplus{\mathbb Z}_2^{8} {\mathbb Z}^{8}
r=4 {\mathbb Z}^{3}\oplus{\mathbb Z}_2^{5} {\mathbb Z}^{5}
r=5 {\mathbb Z}\oplus{\mathbb Z}_2^{3} {\mathbb Z}^{3}
r=6 {\mathbb Z}_2 {\mathbb Z}

Computer Talk

Much of the above data can be recomputed by Mathematica using the package KnotTheory`. See A Sample KnotTheory` Session.

Modifying This Page

Read me first: Modifying Knot Pages

See/edit the Link Page master template (intermediate).

See/edit the Link_Splice_Base (expert).

Back to the top.

L11a483.gif

L11a483

L11a485.gif

L11a485