L11a483

From Knot Atlas
Jump to: navigation, search

L11a482.gif

L11a482

L11a484.gif

L11a484

Contents

L11a483.gif
(Knotscape image)
See the full Thistlethwaite Link Table (up to 11 crossings).

Visit L11a483 at Knotilus!


Link Presentations

[edit Notes on L11a483's Link Presentations]

Planar diagram presentation X6172 X14,7,15,8 X4,15,1,16 X10,6,11,5 X8493 X22,18,19,17 X20,12,21,11 X12,20,13,19 X18,22,5,21 X16,10,17,9 X2,14,3,13
Gauss code {1, -11, 5, -3}, {8, -7, 9, -6}, {4, -1, 2, -5, 10, -4, 7, -8, 11, -2, 3, -10, 6, -9}
A Braid Representative
BraidPart1.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart3.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gif
BraidPart2.gifBraidPart1.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart3.gifBraidPart4.gifBraidPart0.gifBraidPart0.gifBraidPart1.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart3.gifBraidPart0.gif
BraidPart0.gifBraidPart2.gifBraidPart1.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart3.gifBraidPart4.gifBraidPart3.gifBraidPart0.gifBraidPart3.gifBraidPart2.gifBraidPart1.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart3.gifBraidPart4.gifBraidPart3.gif
BraidPart0.gifBraidPart0.gifBraidPart2.gifBraidPart1.gifBraidPart0.gifBraidPart1.gifBraidPart4.gifBraidPart1.gifBraidPart4.gifBraidPart1.gifBraidPart4.gifBraidPart1.gifBraidPart2.gifBraidPart1.gifBraidPart0.gifBraidPart1.gifBraidPart4.gifBraidPart1.gifBraidPart4.gif
BraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart2.gifBraidPart1.gifBraidPart2.gifBraidPart0.gifBraidPart2.gifBraidPart0.gifBraidPart2.gifBraidPart0.gifBraidPart2.gifBraidPart0.gifBraidPart2.gifBraidPart3.gifBraidPart2.gifBraidPart0.gifBraidPart2.gifBraidPart0.gif
BraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart2.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart4.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gif
A Morse Link Presentation L11a483 ML.gif

Polynomial invariants

Multivariable Alexander Polynomial (in u, v, w, ...) \frac{(u-1) (w-1)^2 \left(2 v w^2-2 v w+v+w^3-2 w^2+2 w\right)}{\sqrt{u} \sqrt{v} w^{5/2}} (db)
Jones polynomial q^9-4 q^8+9 q^7-15 q^6+22 q^5-25 q^4+27 q^3-22 q^2+18 q-11+5 q^{-1} - q^{-2} (db)
Signature 2 (db)
HOMFLY-PT polynomial z^2 a^{-8} + a^{-8} -3 z^4 a^{-6} -6 z^2 a^{-6} + a^{-6} z^{-2} -3 a^{-6} +2 z^6 a^{-4} +6 z^4 a^{-4} +8 z^2 a^{-4} -2 a^{-4} z^{-2} +2 a^{-4} +z^6 a^{-2} -3 z^2 a^{-2} + a^{-2} z^{-2} - a^{-2} -z^4+1 (db)
Kauffman polynomial 2 z^{10} a^{-4} +2 z^{10} a^{-6} +9 z^9 a^{-3} +15 z^9 a^{-5} +6 z^9 a^{-7} +14 z^8 a^{-2} +26 z^8 a^{-4} +19 z^8 a^{-6} +7 z^8 a^{-8} +11 z^7 a^{-1} -17 z^7 a^{-5} -2 z^7 a^{-7} +4 z^7 a^{-9} -22 z^6 a^{-2} -70 z^6 a^{-4} -59 z^6 a^{-6} -15 z^6 a^{-8} +z^6 a^{-10} +5 z^6+a z^5-14 z^5 a^{-1} -22 z^5 a^{-3} -18 z^5 a^{-5} -20 z^5 a^{-7} -9 z^5 a^{-9} +14 z^4 a^{-2} +65 z^4 a^{-4} +60 z^4 a^{-6} +11 z^4 a^{-8} -2 z^4 a^{-10} -4 z^4+3 z^3 a^{-1} +15 z^3 a^{-3} +29 z^3 a^{-5} +23 z^3 a^{-7} +6 z^3 a^{-9} -9 z^2 a^{-2} -27 z^2 a^{-4} -25 z^2 a^{-6} -6 z^2 a^{-8} +z^2 a^{-10} -z a^{-1} -z a^{-3} -5 z a^{-5} -7 z a^{-7} -2 z a^{-9} + a^{-2} +2 a^{-4} +3 a^{-6} +2 a^{-8} +1-2 a^{-3} z^{-1} -2 a^{-5} z^{-1} + a^{-2} z^{-2} +2 a^{-4} z^{-2} + a^{-6} z^{-2} (db)

Khovanov Homology

The coefficients of the monomials t^rq^j are shown, along with their alternating sums \chi (fixed j, alternation over r).   
\ r
  \  
j \
-3-2-1012345678χ
19           11
17          3 -3
15         61 5
13        93  -6
11       136   7
9      1411    -3
7     1311     2
5    914      5
3   913       -4
1  411        7
-1 17         -6
-3 4          4
-51           -1
Integral Khovanov Homology

(db, data source)

  
\dim{\mathcal G}_{2r+i}\operatorname{KH}^r_{\mathbb Z} i=1 i=3
r=-3 {\mathbb Z}
r=-2 {\mathbb Z}^{4}\oplus{\mathbb Z}_2 {\mathbb Z}
r=-1 {\mathbb Z}^{7}\oplus{\mathbb Z}_2^{4} {\mathbb Z}^{4}
r=0 {\mathbb Z}^{11}\oplus{\mathbb Z}_2^{7} {\mathbb Z}^{9}
r=1 {\mathbb Z}^{13}\oplus{\mathbb Z}_2^{9} {\mathbb Z}^{9}
r=2 {\mathbb Z}^{14}\oplus{\mathbb Z}_2^{13} {\mathbb Z}^{13}
r=3 {\mathbb Z}^{11}\oplus{\mathbb Z}_2^{14} {\mathbb Z}^{14}
r=4 {\mathbb Z}^{11}\oplus{\mathbb Z}_2^{11} {\mathbb Z}^{13}
r=5 {\mathbb Z}^{6}\oplus{\mathbb Z}_2^{9} {\mathbb Z}^{9}
r=6 {\mathbb Z}^{3}\oplus{\mathbb Z}_2^{6} {\mathbb Z}^{6}
r=7 {\mathbb Z}\oplus{\mathbb Z}_2^{3} {\mathbb Z}^{3}
r=8 {\mathbb Z}_2 {\mathbb Z}

Computer Talk

Much of the above data can be recomputed by Mathematica using the package KnotTheory`. See A Sample KnotTheory` Session.

Modifying This Page

Read me first: Modifying Knot Pages

See/edit the Link Page master template (intermediate).

See/edit the Link_Splice_Base (expert).

Back to the top.

L11a482.gif

L11a482

L11a484.gif

L11a484