# L11a488

## Contents (Knotscape image) See the full Thistlethwaite Link Table (up to 11 crossings). Visit L11a488 at Knotilus!

### Polynomial invariants

 Multivariable Alexander Polynomial (in $u$, $v$, $w$, ...) $-\frac{(u-1) (w-1)^2 \left(2 v w^2-v w+v+w^3-w^2+2 w\right)}{\sqrt{u} \sqrt{v} w^{5/2}}$ (db) Jones polynomial $-q^{11}+3 q^{10}-8 q^9+14 q^8-18 q^7+21 q^6-20 q^5+19 q^4-12 q^3+8 q^2-3 q+1$ (db) Signature 4 (db) HOMFLY-PT polynomial $-z^2 a^{-10} - a^{-10} z^{-2} -2 a^{-10} +3 z^4 a^{-8} +8 z^2 a^{-8} +4 a^{-8} z^{-2} +9 a^{-8} -2 z^6 a^{-6} -7 z^4 a^{-6} -12 z^2 a^{-6} -5 a^{-6} z^{-2} -13 a^{-6} -z^6 a^{-4} -z^4 a^{-4} +3 z^2 a^{-4} +2 a^{-4} z^{-2} +5 a^{-4} +z^4 a^{-2} +2 z^2 a^{-2} + a^{-2}$ (db) Kauffman polynomial $z^{10} a^{-6} +z^{10} a^{-8} +4 z^9 a^{-5} +9 z^9 a^{-7} +5 z^9 a^{-9} +5 z^8 a^{-4} +16 z^8 a^{-6} +19 z^8 a^{-8} +8 z^8 a^{-10} +3 z^7 a^{-3} -5 z^7 a^{-7} +4 z^7 a^{-9} +6 z^7 a^{-11} +z^6 a^{-2} -11 z^6 a^{-4} -51 z^6 a^{-6} -56 z^6 a^{-8} -14 z^6 a^{-10} +3 z^6 a^{-12} -7 z^5 a^{-3} -18 z^5 a^{-5} -29 z^5 a^{-7} -28 z^5 a^{-9} -9 z^5 a^{-11} +z^5 a^{-13} -3 z^4 a^{-2} +10 z^4 a^{-4} +64 z^4 a^{-6} +71 z^4 a^{-8} +16 z^4 a^{-10} -4 z^4 a^{-12} +4 z^3 a^{-3} +24 z^3 a^{-5} +50 z^3 a^{-7} +39 z^3 a^{-9} +7 z^3 a^{-11} -2 z^3 a^{-13} +3 z^2 a^{-2} -11 z^2 a^{-4} -48 z^2 a^{-6} -48 z^2 a^{-8} -13 z^2 a^{-10} +z^2 a^{-12} -17 z a^{-5} -35 z a^{-7} -23 z a^{-9} -4 z a^{-11} +z a^{-13} - a^{-2} +8 a^{-4} +22 a^{-6} +19 a^{-8} +5 a^{-10} +5 a^{-5} z^{-1} +9 a^{-7} z^{-1} +5 a^{-9} z^{-1} + a^{-11} z^{-1} -2 a^{-4} z^{-2} -5 a^{-6} z^{-2} -4 a^{-8} z^{-2} - a^{-10} z^{-2}$ (db)

### Khovanov Homology

The coefficients of the monomials $t^rq^j$ are shown, along with their alternating sums $\chi$ (fixed $j$, alternation over $r$).
 \ r \ j \
-2-10123456789χ
23           1-1
21          2 2
19         61 -5
17        82  6
15       106   -4
13      118    3
11     1112     1
9    89      -1
7   411       7
5  48        -4
3 16         5
1 2          -2
-11           1
Integral Khovanov Homology $\dim{\mathcal G}_{2r+i}\operatorname{KH}^r_{\mathbb Z}$ $i=3$ $i=5$ $r=-2$ ${\mathbb Z}$ $r=-1$ ${\mathbb Z}^{2}\oplus{\mathbb Z}_2$ ${\mathbb Z}$ $r=0$ ${\mathbb Z}^{6}\oplus{\mathbb Z}_2^{2}$ ${\mathbb Z}^{4}$ $r=1$ ${\mathbb Z}^{8}\oplus{\mathbb Z}_2^{4}$ ${\mathbb Z}^{4}$ $r=2$ ${\mathbb Z}^{11}\oplus{\mathbb Z}_2^{8}$ ${\mathbb Z}^{8}$ $r=3$ ${\mathbb Z}^{9}\oplus{\mathbb Z}_2^{11}$ ${\mathbb Z}^{11}$ $r=4$ ${\mathbb Z}^{12}\oplus{\mathbb Z}_2^{9}$ ${\mathbb Z}^{11}$ $r=5$ ${\mathbb Z}^{8}\oplus{\mathbb Z}_2^{10}$ ${\mathbb Z}^{10}$ $r=6$ ${\mathbb Z}^{6}\oplus{\mathbb Z}_2^{8}$ ${\mathbb Z}^{8}$ $r=7$ ${\mathbb Z}^{2}\oplus{\mathbb Z}_2^{6}$ ${\mathbb Z}^{6}$ $r=8$ ${\mathbb Z}\oplus{\mathbb Z}_2^{2}$ ${\mathbb Z}^{2}$ $r=9$ ${\mathbb Z}_2$ ${\mathbb Z}$

### Computer Talk

Much of the above data can be recomputed by Mathematica using the package KnotTheory. See A Sample KnotTheory Session.