L11a488

From Knot Atlas
Jump to: navigation, search

L11a487.gif

L11a487

L11a489.gif

L11a489

Contents

L11a488.gif
(Knotscape image)
See the full Thistlethwaite Link Table (up to 11 crossings).

Visit L11a488 at Knotilus!


Link Presentations

[edit Notes on L11a488's Link Presentations]

Planar diagram presentation X6172 X10,4,11,3 X12,8,13,7 X16,10,17,9 X22,18,19,17 X20,14,21,13 X14,20,15,19 X18,22,5,21 X8,16,9,15 X2536 X4,12,1,11
Gauss code {1, -10, 2, -11}, {7, -6, 8, -5}, {10, -1, 3, -9, 4, -2, 11, -3, 6, -7, 9, -4, 5, -8}
A Braid Representative
BraidPart1.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart3.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gif
BraidPart2.gifBraidPart1.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart3.gifBraidPart4.gifBraidPart0.gifBraidPart1.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart3.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gif
BraidPart0.gifBraidPart2.gifBraidPart1.gifBraidPart0.gifBraidPart1.gifBraidPart4.gifBraidPart1.gifBraidPart1.gifBraidPart2.gifBraidPart1.gifBraidPart0.gifBraidPart1.gifBraidPart4.gifBraidPart1.gifBraidPart1.gifBraidPart0.gifBraidPart1.gif
BraidPart0.gifBraidPart0.gifBraidPart2.gifBraidPart3.gifBraidPart2.gifBraidPart0.gifBraidPart2.gifBraidPart2.gifBraidPart0.gifBraidPart2.gifBraidPart1.gifBraidPart2.gifBraidPart3.gifBraidPart2.gifBraidPart2.gifBraidPart3.gifBraidPart2.gif
BraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart4.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart2.gifBraidPart1.gifBraidPart4.gifBraidPart0.gifBraidPart0.gifBraidPart4.gifBraidPart3.gif
BraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart2.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart4.gif
A Morse Link Presentation L11a488 ML.gif

Polynomial invariants

Multivariable Alexander Polynomial (in u, v, w, ...) -\frac{(u-1) (w-1)^2 \left(2 v w^2-v w+v+w^3-w^2+2 w\right)}{\sqrt{u} \sqrt{v} w^{5/2}} (db)
Jones polynomial -q^{11}+3 q^{10}-8 q^9+14 q^8-18 q^7+21 q^6-20 q^5+19 q^4-12 q^3+8 q^2-3 q+1 (db)
Signature 4 (db)
HOMFLY-PT polynomial -z^2 a^{-10} - a^{-10} z^{-2} -2 a^{-10} +3 z^4 a^{-8} +8 z^2 a^{-8} +4 a^{-8} z^{-2} +9 a^{-8} -2 z^6 a^{-6} -7 z^4 a^{-6} -12 z^2 a^{-6} -5 a^{-6} z^{-2} -13 a^{-6} -z^6 a^{-4} -z^4 a^{-4} +3 z^2 a^{-4} +2 a^{-4} z^{-2} +5 a^{-4} +z^4 a^{-2} +2 z^2 a^{-2} + a^{-2} (db)
Kauffman polynomial z^{10} a^{-6} +z^{10} a^{-8} +4 z^9 a^{-5} +9 z^9 a^{-7} +5 z^9 a^{-9} +5 z^8 a^{-4} +16 z^8 a^{-6} +19 z^8 a^{-8} +8 z^8 a^{-10} +3 z^7 a^{-3} -5 z^7 a^{-7} +4 z^7 a^{-9} +6 z^7 a^{-11} +z^6 a^{-2} -11 z^6 a^{-4} -51 z^6 a^{-6} -56 z^6 a^{-8} -14 z^6 a^{-10} +3 z^6 a^{-12} -7 z^5 a^{-3} -18 z^5 a^{-5} -29 z^5 a^{-7} -28 z^5 a^{-9} -9 z^5 a^{-11} +z^5 a^{-13} -3 z^4 a^{-2} +10 z^4 a^{-4} +64 z^4 a^{-6} +71 z^4 a^{-8} +16 z^4 a^{-10} -4 z^4 a^{-12} +4 z^3 a^{-3} +24 z^3 a^{-5} +50 z^3 a^{-7} +39 z^3 a^{-9} +7 z^3 a^{-11} -2 z^3 a^{-13} +3 z^2 a^{-2} -11 z^2 a^{-4} -48 z^2 a^{-6} -48 z^2 a^{-8} -13 z^2 a^{-10} +z^2 a^{-12} -17 z a^{-5} -35 z a^{-7} -23 z a^{-9} -4 z a^{-11} +z a^{-13} - a^{-2} +8 a^{-4} +22 a^{-6} +19 a^{-8} +5 a^{-10} +5 a^{-5} z^{-1} +9 a^{-7} z^{-1} +5 a^{-9} z^{-1} + a^{-11} z^{-1} -2 a^{-4} z^{-2} -5 a^{-6} z^{-2} -4 a^{-8} z^{-2} - a^{-10} z^{-2} (db)

Khovanov Homology

The coefficients of the monomials t^rq^j are shown, along with their alternating sums \chi (fixed j, alternation over r).   
\ r
  \  
j \
-2-10123456789χ
23           1-1
21          2 2
19         61 -5
17        82  6
15       106   -4
13      118    3
11     1112     1
9    89      -1
7   411       7
5  48        -4
3 16         5
1 2          -2
-11           1
Integral Khovanov Homology

(db, data source)

  
\dim{\mathcal G}_{2r+i}\operatorname{KH}^r_{\mathbb Z} i=3 i=5
r=-2 {\mathbb Z}
r=-1 {\mathbb Z}^{2}\oplus{\mathbb Z}_2 {\mathbb Z}
r=0 {\mathbb Z}^{6}\oplus{\mathbb Z}_2^{2} {\mathbb Z}^{4}
r=1 {\mathbb Z}^{8}\oplus{\mathbb Z}_2^{4} {\mathbb Z}^{4}
r=2 {\mathbb Z}^{11}\oplus{\mathbb Z}_2^{8} {\mathbb Z}^{8}
r=3 {\mathbb Z}^{9}\oplus{\mathbb Z}_2^{11} {\mathbb Z}^{11}
r=4 {\mathbb Z}^{12}\oplus{\mathbb Z}_2^{9} {\mathbb Z}^{11}
r=5 {\mathbb Z}^{8}\oplus{\mathbb Z}_2^{10} {\mathbb Z}^{10}
r=6 {\mathbb Z}^{6}\oplus{\mathbb Z}_2^{8} {\mathbb Z}^{8}
r=7 {\mathbb Z}^{2}\oplus{\mathbb Z}_2^{6} {\mathbb Z}^{6}
r=8 {\mathbb Z}\oplus{\mathbb Z}_2^{2} {\mathbb Z}^{2}
r=9 {\mathbb Z}_2 {\mathbb Z}

Computer Talk

Much of the above data can be recomputed by Mathematica using the package KnotTheory`. See A Sample KnotTheory` Session.

Modifying This Page

Read me first: Modifying Knot Pages

See/edit the Link Page master template (intermediate).

See/edit the Link_Splice_Base (expert).

Back to the top.

L11a487.gif

L11a487

L11a489.gif

L11a489