From Knot Atlas
Jump to: navigation, search






(Knotscape image)
See the full Thistlethwaite Link Table (up to 11 crossings).

Visit L11a489 at Knotilus!

Link Presentations

[edit Notes on L11a489's Link Presentations]

Planar diagram presentation X6172 X10,3,11,4 X20,14,21,13 X14,7,15,8 X8,15,9,16 X18,11,5,12 X12,20,13,19 X16,22,17,21 X22,18,19,17 X2536 X4,9,1,10
Gauss code {1, -10, 2, -11}, {7, -3, 8, -9}, {10, -1, 4, -5, 11, -2, 6, -7, 3, -4, 5, -8, 9, -6}
A Braid Representative
A Morse Link Presentation L11a489 ML.gif

Polynomial invariants

Multivariable Alexander Polynomial (in u, v, w, ...) -\frac{(t(3)-1) \left(t(2) t(3)^4+2 t(1) t(2) t(3)^3-3 t(2) t(3)^3+2 t(3)^3+3 t(1) t(3)^2-3 t(1) t(2) t(3)^2+3 t(2) t(3)^2-3 t(3)^2-3 t(1) t(3)+2 t(1) t(2) t(3)+2 t(3)+t(1)\right)}{\sqrt{t(1)} \sqrt{t(2)} t(3)^{5/2}} (db)
Jones polynomial q^4-3 q^3+7 q^2-11 q+17-17 q^{-1} +18 q^{-2} -15 q^{-3} +12 q^{-4} -7 q^{-5} +3 q^{-6} - q^{-7} (db)
Signature 0 (db)
HOMFLY-PT polynomial -z^2 a^6-a^6 z^{-2} -2 a^6+3 z^4 a^4+9 z^2 a^4+4 a^4 z^{-2} +10 a^4-2 z^6 a^2-8 z^4 a^2-14 z^2 a^2-5 a^2 z^{-2} -13 a^2-z^6-2 z^4+2 z^{-2} +4+z^4 a^{-2} +2 z^2 a^{-2} + a^{-2} (db)
Kauffman polynomial a^4 z^{10}+a^2 z^{10}+3 a^5 z^9+8 a^3 z^9+5 a z^9+3 a^6 z^8+11 a^4 z^8+17 a^2 z^8+9 z^8+a^7 z^7-3 a^5 z^7-8 a^3 z^7+4 a z^7+8 z^7 a^{-1} -11 a^6 z^6-47 a^4 z^6-57 a^2 z^6+6 z^6 a^{-2} -15 z^6-4 a^7 z^5-18 a^5 z^5-37 a^3 z^5-35 a z^5-9 z^5 a^{-1} +3 z^5 a^{-3} +14 a^6 z^4+57 a^4 z^4+63 a^2 z^4-7 z^4 a^{-2} +z^4 a^{-4} +12 z^4+6 a^7 z^3+34 a^5 z^3+64 a^3 z^3+42 a z^3+4 z^3 a^{-1} -2 z^3 a^{-3} -8 a^6 z^2-36 a^4 z^2-43 a^2 z^2+6 z^2 a^{-2} -z^2 a^{-4} -8 z^2-4 a^7 z-21 a^5 z-39 a^3 z-22 a z+3 a^6+16 a^4+21 a^2-2 a^{-2} +7+a^7 z^{-1} +5 a^5 z^{-1} +9 a^3 z^{-1} +5 a z^{-1} -a^6 z^{-2} -4 a^4 z^{-2} -5 a^2 z^{-2} -2 z^{-2} (db)

Khovanov Homology

The coefficients of the monomials t^rq^j are shown, along with their alternating sums \chi (fixed j, alternation over r).   
\ r
j \
9           11
7          31-2
5         4  4
3        73  -4
1       104   6
-1      99    0
-3     98     1
-5    69      3
-7   69       -3
-9  27        5
-11 15         -4
-13 2          2
-151           -1
Integral Khovanov Homology

(db, data source)

\dim{\mathcal G}_{2r+i}\operatorname{KH}^r_{\mathbb Z} i=-1 i=1
r=-7 {\mathbb Z}
r=-6 {\mathbb Z}^{2}\oplus{\mathbb Z}_2 {\mathbb Z}
r=-5 {\mathbb Z}^{5}\oplus{\mathbb Z}_2^{2} {\mathbb Z}^{2}
r=-4 {\mathbb Z}^{7}\oplus{\mathbb Z}_2^{5} {\mathbb Z}^{6}
r=-3 {\mathbb Z}^{9}\oplus{\mathbb Z}_2^{6} {\mathbb Z}^{6}
r=-2 {\mathbb Z}^{9}\oplus{\mathbb Z}_2^{9} {\mathbb Z}^{9}
r=-1 {\mathbb Z}^{8}\oplus{\mathbb Z}_2^{9} {\mathbb Z}^{9}
r=0 {\mathbb Z}^{9}\oplus{\mathbb Z}_2^{8} {\mathbb Z}^{10}
r=1 {\mathbb Z}^{4}\oplus{\mathbb Z}_2^{7} {\mathbb Z}^{7}
r=2 {\mathbb Z}^{3}\oplus{\mathbb Z}_2^{4} {\mathbb Z}^{4}
r=3 {\mathbb Z}_2^{3} {\mathbb Z}^{3}
r=4 {\mathbb Z} {\mathbb Z}

Computer Talk

Much of the above data can be recomputed by Mathematica using the package KnotTheory`. See A Sample KnotTheory` Session.

Modifying This Page

Read me first: Modifying Knot Pages

See/edit the Link Page master template (intermediate).

See/edit the Link_Splice_Base (expert).

Back to the top.