# L11a502

## Contents (Knotscape image) See the full Thistlethwaite Link Table (up to 11 crossings). Visit L11a502 at Knotilus!

### Polynomial invariants

 Multivariable Alexander Polynomial (in $u$, $v$, $w$, ...) $\frac{-t(1)^2 t(3)^3+2 t(1) t(2)^2 t(3)^3-t(2)^2 t(3)^3+t(1) t(3)^3+2 t(1)^2 t(2) t(3)^3-3 t(1) t(2) t(3)^3+t(2) t(3)^3+t(1)^2 t(3)^2-2 t(1) t(2)^2 t(3)^2+t(2)^2 t(3)^2-2 t(1) t(3)^2-2 t(1)^2 t(2) t(3)^2+4 t(1) t(2) t(3)^2-2 t(2) t(3)^2-t(1)^2 t(3)+2 t(1) t(2)^2 t(3)-t(2)^2 t(3)+2 t(1) t(3)+2 t(1)^2 t(2) t(3)-4 t(1) t(2) t(3)+2 t(2) t(3)+t(1)^2-t(1) t(2)^2+t(2)^2-2 t(1)-t(1)^2 t(2)+3 t(1) t(2)-2 t(2)}{t(1) t(2) t(3)^{3/2}}$ (db) Jones polynomial $q^{-3} -2 q^{-4} +6 q^{-5} -9 q^{-6} +14 q^{-7} -15 q^{-8} +17 q^{-9} -14 q^{-10} +11 q^{-11} -7 q^{-12} +3 q^{-13} - q^{-14}$ (db) Signature -6 (db) HOMFLY-PT polynomial $-a^{14} z^{-2} -a^{12} z^4-a^{12} z^2+4 a^{12} z^{-2} +4 a^{12}+a^{10} z^6+a^{10} z^4-6 a^{10} z^2-5 a^{10} z^{-2} -10 a^{10}+2 a^8 z^6+7 a^8 z^4+7 a^8 z^2+2 a^8 z^{-2} +4 a^8+a^6 z^6+4 a^6 z^4+5 a^6 z^2+2 a^6$ (db) Kauffman polynomial $z^5 a^{17}-2 z^3 a^{17}+3 z^6 a^{16}-5 z^4 a^{16}+6 z^7 a^{15}-14 z^5 a^{15}+12 z^3 a^{15}-5 z a^{15}+a^{15} z^{-1} +7 z^8 a^{14}-18 z^6 a^{14}+22 z^4 a^{14}-12 z^2 a^{14}-a^{14} z^{-2} +4 a^{14}+4 z^9 a^{13}-2 z^7 a^{13}-13 z^5 a^{13}+30 z^3 a^{13}-21 z a^{13}+5 a^{13} z^{-1} +z^{10} a^{12}+9 z^8 a^{12}-30 z^6 a^{12}+44 z^4 a^{12}-33 z^2 a^{12}-4 a^{12} z^{-2} +17 a^{12}+6 z^9 a^{11}-8 z^7 a^{11}-9 z^5 a^{11}+35 z^3 a^{11}-33 z a^{11}+9 a^{11} z^{-1} +z^{10} a^{10}+5 z^8 a^{10}-17 z^6 a^{10}+27 z^4 a^{10}-33 z^2 a^{10}-5 a^{10} z^{-2} +20 a^{10}+2 z^9 a^9+2 z^7 a^9-16 z^5 a^9+21 z^3 a^9-16 z a^9+5 a^9 z^{-1} +3 z^8 a^8-7 z^6 a^8+6 z^4 a^8-7 z^2 a^8-2 a^8 z^{-2} +6 a^8+2 z^7 a^7-5 z^5 a^7+2 z^3 a^7+z a^7+z^6 a^6-4 z^4 a^6+5 z^2 a^6-2 a^6$ (db)

### Khovanov Homology

The coefficients of the monomials $t^rq^j$ are shown, along with their alternating sums $\chi$ (fixed $j$, alternation over $r$).
 \ r \ j \
-11-10-9-8-7-6-5-4-3-2-10χ
-5           11
-7          21-1
-9         4  4
-11        52  -3
-13       94   5
-15      76    -1
-17     108     2
-19    69      3
-21   58       -3
-23  26        4
-25 15         -4
-27 2          2
-291           -1
Integral Khovanov Homology $\dim{\mathcal G}_{2r+i}\operatorname{KH}^r_{\mathbb Z}$ $i=-7$ $i=-5$ $r=-11$ ${\mathbb Z}$ $r=-10$ ${\mathbb Z}^{2}\oplus{\mathbb Z}_2$ ${\mathbb Z}$ $r=-9$ ${\mathbb Z}^{5}\oplus{\mathbb Z}_2^{2}$ ${\mathbb Z}^{2}$ $r=-8$ ${\mathbb Z}^{6}\oplus{\mathbb Z}_2^{5}$ ${\mathbb Z}^{5}$ $r=-7$ ${\mathbb Z}^{8}\oplus{\mathbb Z}_2^{6}$ ${\mathbb Z}^{6}$ $r=-6$ ${\mathbb Z}^{9}\oplus{\mathbb Z}_2^{8}$ ${\mathbb Z}^{10}$ $r=-5$ ${\mathbb Z}^{8}\oplus{\mathbb Z}_2^{7}$ ${\mathbb Z}^{7}$ $r=-4$ ${\mathbb Z}^{6}\oplus{\mathbb Z}_2^{8}$ ${\mathbb Z}^{9}$ $r=-3$ ${\mathbb Z}^{4}\oplus{\mathbb Z}_2^{5}$ ${\mathbb Z}^{5}$ $r=-2$ ${\mathbb Z}^{2}\oplus{\mathbb Z}_2^{4}$ ${\mathbb Z}^{4}$ $r=-1$ ${\mathbb Z}_2^{2}$ ${\mathbb Z}^{2}$ $r=0$ ${\mathbb Z}$ ${\mathbb Z}$

### Computer Talk

Much of the above data can be recomputed by Mathematica using the package KnotTheory. See A Sample KnotTheory Session.