L11a524

From Knot Atlas
Jump to: navigation, search

L11a523.gif

L11a523

L11a525.gif

L11a525

Contents

L11a524.gif
(Knotscape image)
See the full Thistlethwaite Link Table (up to 11 crossings).

Visit L11a524 at Knotilus!


Link Presentations

[edit Notes on L11a524's Link Presentations]

Planar diagram presentation X8192 X22,10,13,9 X18,8,19,7 X20,17,21,18 X6,22,1,21 X4,11,5,12 X16,6,17,5 X10,16,11,15 X12,20,7,19 X2,13,3,14 X14,3,15,4
Gauss code {1, -10, 11, -6, 7, -5}, {3, -1, 2, -8, 6, -9}, {10, -11, 8, -7, 4, -3, 9, -4, 5, -2}
A Braid Representative
BraidPart1.gifBraidPart0.gifBraidPart1.gifBraidPart0.gifBraidPart0.gifBraidPart1.gifBraidPart0.gifBraidPart1.gifBraidPart0.gifBraidPart0.gif
BraidPart2.gifBraidPart3.gifBraidPart2.gifBraidPart3.gifBraidPart3.gifBraidPart2.gifBraidPart3.gifBraidPart2.gifBraidPart3.gifBraidPart0.gif
BraidPart0.gifBraidPart4.gifBraidPart0.gifBraidPart4.gifBraidPart4.gifBraidPart0.gifBraidPart4.gifBraidPart1.gifBraidPart4.gifBraidPart1.gif
BraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart2.gifBraidPart0.gifBraidPart2.gif
A Morse Link Presentation L11a524 ML.gif

Polynomial invariants

Multivariable Alexander Polynomial (in u, v, w, ...) \frac{(v-1) \left(u^2 v w^3-3 u^2 v w^2+2 u^2 v w-u^2 w^3+2 u^2 w^2-u^2 w-u v w^3+4 u v w^2-5 u v w+u v+u w^3-5 u w^2+4 u w-u-v w^2+2 v w-v+2 w^2-3 w+1\right)}{u v w^{3/2}} (db)
Jones polynomial q^6-4 q^5- q^{-5} +10 q^4+5 q^{-4} -16 q^3-11 q^{-3} +24 q^2+18 q^{-2} -26 q-24 q^{-1} +28 (db)
Signature 0 (db)
HOMFLY-PT polynomial z^4 a^{-4} +2 z^2 a^{-4} + a^{-4} z^{-2} + a^{-4} -a^2 z^6-2 z^6 a^{-2} -2 a^2 z^4-6 z^4 a^{-2} -5 z^2 a^{-2} -2 a^{-2} z^{-2} +a^2-2 a^{-2} +z^8+4 z^6+5 z^4+z^2+ z^{-2} (db)
Kauffman polynomial z^6 a^{-6} -2 z^4 a^{-6} +z^2 a^{-6} +4 z^7 a^{-5} +a^5 z^5-8 z^5 a^{-5} +4 z^3 a^{-5} +8 z^8 a^{-4} +5 a^4 z^6-18 z^6 a^{-4} -4 a^4 z^4+16 z^4 a^{-4} -10 z^2 a^{-4} - a^{-4} z^{-2} +4 a^{-4} +8 z^9 a^{-3} +11 a^3 z^7-11 z^7 a^{-3} -14 a^3 z^5-z^5 a^{-3} +4 a^3 z^3+6 z^3 a^{-3} -5 z a^{-3} +2 a^{-3} z^{-1} +3 z^{10} a^{-2} +14 a^2 z^8+16 z^8 a^{-2} -19 a^2 z^6-52 z^6 a^{-2} +6 a^2 z^4+50 z^4 a^{-2} -22 z^2 a^{-2} -2 a^{-2} z^{-2} -a^2+6 a^{-2} +10 a z^9+18 z^9 a^{-1} -2 a z^7-28 z^7 a^{-1} -20 a z^5+2 z^5 a^{-1} +13 a z^3+11 z^3 a^{-1} -5 z a^{-1} +2 a^{-1} z^{-1} +3 z^{10}+22 z^8-57 z^6+42 z^4-11 z^2- z^{-2} +2 (db)

Khovanov Homology

The coefficients of the monomials t^rq^j are shown, along with their alternating sums \chi (fixed j, alternation over r).   
\ r
  \  
j \
-5-4-3-2-10123456χ
13           11
11          3 -3
9         71 6
7        104  -6
5       146   8
3      1311    -2
1     1513     2
-1    1014      4
-3   814       -6
-5  411        7
-7 17         -6
-9 4          4
-111           -1
Integral Khovanov Homology

(db, data source)

  
\dim{\mathcal G}_{2r+i}\operatorname{KH}^r_{\mathbb Z} i=-1 i=1
r=-5 {\mathbb Z}
r=-4 {\mathbb Z}^{4}\oplus{\mathbb Z}_2 {\mathbb Z}
r=-3 {\mathbb Z}^{7}\oplus{\mathbb Z}_2^{4} {\mathbb Z}^{4}
r=-2 {\mathbb Z}^{11}\oplus{\mathbb Z}_2^{7} {\mathbb Z}^{8}
r=-1 {\mathbb Z}^{14}\oplus{\mathbb Z}_2^{10} {\mathbb Z}^{10}
r=0 {\mathbb Z}^{14}\oplus{\mathbb Z}_2^{14} {\mathbb Z}^{15}
r=1 {\mathbb Z}^{13}\oplus{\mathbb Z}_2^{13} {\mathbb Z}^{13}
r=2 {\mathbb Z}^{11}\oplus{\mathbb Z}_2^{13} {\mathbb Z}^{14}
r=3 {\mathbb Z}^{6}\oplus{\mathbb Z}_2^{10} {\mathbb Z}^{10}
r=4 {\mathbb Z}^{4}\oplus{\mathbb Z}_2^{6} {\mathbb Z}^{7}
r=5 {\mathbb Z}\oplus{\mathbb Z}_2^{3} {\mathbb Z}^{3}
r=6 {\mathbb Z}_2 {\mathbb Z}

Computer Talk

Much of the above data can be recomputed by Mathematica using the package KnotTheory`. See A Sample KnotTheory` Session.

Modifying This Page

Read me first: Modifying Knot Pages

See/edit the Link Page master template (intermediate).

See/edit the Link_Splice_Base (expert).

Back to the top.

L11a523.gif

L11a523

L11a525.gif

L11a525