# L11a528

## Contents (Knotscape image) See the full Thistlethwaite Link Table (up to 11 crossings). Visit L11a528 at Knotilus!

### Polynomial invariants

 Multivariable Alexander Polynomial (in $u$, $v$, $w$, ...) $\frac{(t(3)-1) \left(t(2) t(3)^2 t(1)^2-t(3)^2 t(1)^2+t(2) t(1)^2+t(2)^2 t(3) t(1)^2-t(2) t(3) t(1)^2+t(3) t(1)^2-t(1)^2+t(2)^2 t(1)+t(2)^2 t(3)^2 t(1)-2 t(2) t(3)^2 t(1)+t(3)^2 t(1)-2 t(2) t(1)-t(2)^2 t(3) t(1)-t(3) t(1)+t(1)-t(2)^2-t(2)^2 t(3)^2+t(2) t(3)^2+t(2)+t(2)^2 t(3)-t(2) t(3)+t(3)\right)}{t(1) t(2) t(3)^{3/2}}$ (db) Jones polynomial $-q^6+3 q^5-6 q^4+10 q^3-13 q^2+15 q-14+14 q^{-1} -9 q^{-2} +7 q^{-3} -3 q^{-4} + q^{-5}$ (db) Signature 2 (db) HOMFLY-PT polynomial $z^6 a^{-2} +2 z^6-3 a^2 z^4+2 z^4 a^{-2} -z^4 a^{-4} +8 z^4+a^4 z^2-9 a^2 z^2-z^2 a^{-2} -2 z^2 a^{-4} +11 z^2+2 a^4-7 a^2-2 a^{-2} +7+a^4 z^{-2} -2 a^2 z^{-2} + z^{-2}$ (db) Kauffman polynomial $2 a^2 z^{10}+2 z^{10}+3 a^3 z^9+11 a z^9+8 z^9 a^{-1} +a^4 z^8-a^2 z^8+13 z^8 a^{-2} +11 z^8-14 a^3 z^7-44 a z^7-17 z^7 a^{-1} +13 z^7 a^{-3} -5 a^4 z^6-28 a^2 z^6-36 z^6 a^{-2} +10 z^6 a^{-4} -69 z^6+20 a^3 z^5+46 a z^5-8 z^5 a^{-1} -28 z^5 a^{-3} +6 z^5 a^{-5} +10 a^4 z^4+63 a^2 z^4+28 z^4 a^{-2} -14 z^4 a^{-4} +3 z^4 a^{-6} +98 z^4-7 a^3 z^3-5 a z^3+20 z^3 a^{-1} +14 z^3 a^{-3} -3 z^3 a^{-5} +z^3 a^{-7} -10 a^4 z^2-46 a^2 z^2-14 z^2 a^{-2} +4 z^2 a^{-4} -54 z^2-3 a^3 z-7 a z-6 z a^{-1} -2 z a^{-3} +5 a^4+13 a^2+4 a^{-2} +13+2 a^3 z^{-1} +2 a z^{-1} -a^4 z^{-2} -2 a^2 z^{-2} - z^{-2}$ (db)

### Khovanov Homology

The coefficients of the monomials $t^rq^j$ are shown, along with their alternating sums $\chi$ (fixed $j$, alternation over $r$).
 \ r \ j \
-6-5-4-3-2-1012345χ
13           1-1
11          2 2
9         41 -3
7        62  4
5       74   -3
3      86    2
1     89     1
-1    66      0
-3   510       5
-5  24        -2
-7 15         4
-9 2          -2
-111           1
Integral Khovanov Homology $\dim{\mathcal G}_{2r+i}\operatorname{KH}^r_{\mathbb Z}$ $i=1$ $i=3$ $r=-6$ ${\mathbb Z}$ $r=-5$ ${\mathbb Z}^{2}\oplus{\mathbb Z}_2$ ${\mathbb Z}$ $r=-4$ ${\mathbb Z}^{5}\oplus{\mathbb Z}_2^{2}$ ${\mathbb Z}^{2}$ $r=-3$ ${\mathbb Z}^{4}\oplus{\mathbb Z}_2^{5}$ ${\mathbb Z}^{5}$ $r=-2$ ${\mathbb Z}^{10}\oplus{\mathbb Z}_2^{4}$ ${\mathbb Z}^{6}$ $r=-1$ ${\mathbb Z}^{6}\oplus{\mathbb Z}_2^{8}$ ${\mathbb Z}^{8}$ $r=0$ ${\mathbb Z}^{9}\oplus{\mathbb Z}_2^{6}$ ${\mathbb Z}^{8}$ $r=1$ ${\mathbb Z}^{6}\oplus{\mathbb Z}_2^{7}$ ${\mathbb Z}^{7}$ $r=2$ ${\mathbb Z}^{4}\oplus{\mathbb Z}_2^{6}$ ${\mathbb Z}^{6}$ $r=3$ ${\mathbb Z}^{2}\oplus{\mathbb Z}_2^{4}$ ${\mathbb Z}^{4}$ $r=4$ ${\mathbb Z}\oplus{\mathbb Z}_2^{2}$ ${\mathbb Z}^{2}$ $r=5$ ${\mathbb Z}_2$ ${\mathbb Z}$

### Computer Talk

Much of the above data can be recomputed by Mathematica using the package KnotTheory. See A Sample KnotTheory Session.