L11a529

From Knot Atlas
Jump to: navigation, search

L11a528.gif

L11a528

L11a530.gif

L11a530

Contents

L11a529.gif
(Knotscape image)
See the full Thistlethwaite Link Table (up to 11 crossings).

Visit L11a529 at Knotilus!


Link Presentations

[edit Notes on L11a529's Link Presentations]

Planar diagram presentation X8192 X14,3,15,4 X12,13,7,14 X16,7,17,8 X22,17,13,18 X18,5,19,6 X20,9,21,10 X10,19,11,20 X4,11,5,12 X2,15,3,16 X6,21,1,22
Gauss code {1, -10, 2, -9, 6, -11}, {4, -1, 7, -8, 9, -3}, {3, -2, 10, -4, 5, -6, 8, -7, 11, -5}
A Braid Representative
BraidPart1.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart3.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gif
BraidPart2.gifBraidPart3.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart1.gifBraidPart4.gifBraidPart1.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart3.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gif
BraidPart0.gifBraidPart4.gifBraidPart1.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart3.gifBraidPart2.gifBraidPart3.gifBraidPart2.gifBraidPart3.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart1.gifBraidPart4.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart1.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gif
BraidPart0.gifBraidPart0.gifBraidPart2.gifBraidPart3.gifBraidPart0.gifBraidPart3.gifBraidPart0.gifBraidPart3.gifBraidPart4.gifBraidPart3.gifBraidPart4.gifBraidPart0.gifBraidPart4.gifBraidPart3.gifBraidPart0.gifBraidPart3.gifBraidPart2.gifBraidPart3.gifBraidPart0.gifBraidPart3.gifBraidPart0.gifBraidPart3.gifBraidPart2.gifBraidPart3.gifBraidPart0.gifBraidPart3.gifBraidPart0.gif
BraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart4.gifBraidPart1.gifBraidPart4.gifBraidPart1.gifBraidPart4.gifBraidPart0.gifBraidPart4.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart4.gifBraidPart3.gifBraidPart4.gifBraidPart0.gifBraidPart4.gifBraidPart3.gifBraidPart4.gifBraidPart3.gifBraidPart4.gifBraidPart0.gifBraidPart4.gifBraidPart1.gifBraidPart4.gifBraidPart0.gif
BraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart2.gifBraidPart1.gifBraidPart2.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart4.gifBraidPart3.gifBraidPart0.gifBraidPart0.gifBraidPart4.gifBraidPart3.gifBraidPart4.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart2.gifBraidPart1.gifBraidPart0.gif
BraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart2.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart4.gifBraidPart3.gifBraidPart0.gifBraidPart0.gifBraidPart4.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart2.gifBraidPart1.gif
BraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart4.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart2.gif
A Morse Link Presentation L11a529 ML.gif

Polynomial invariants

Multivariable Alexander Polynomial (in u, v, w, ...) \frac{t(1)^2 t(3)^3+t(2)^2 t(3)^3-2 t(1) t(3)^3+2 t(1) t(2) t(3)^3-2 t(2) t(3)^3+t(3)^3-3 t(1)^2 t(3)^2+3 t(1) t(2)^2 t(3)^2-3 t(2)^2 t(3)^2+5 t(1) t(3)^2+3 t(1)^2 t(2) t(3)^2-7 t(1) t(2) t(3)^2+5 t(2) t(3)^2-2 t(3)^2+3 t(1)^2 t(3)+2 t(1)^2 t(2)^2 t(3)-5 t(1) t(2)^2 t(3)+3 t(2)^2 t(3)-3 t(1) t(3)-5 t(1)^2 t(2) t(3)+7 t(1) t(2) t(3)-3 t(2) t(3)-t(1)^2-t(1)^2 t(2)^2+2 t(1) t(2)^2-t(2)^2+2 t(1)^2 t(2)-2 t(1) t(2)}{t(1) t(2) t(3)^{3/2}} (db)
Jones polynomial - q^{-13} +5 q^{-12} -10 q^{-11} +17 q^{-10} -22 q^{-9} +26 q^{-8} -25 q^{-7} +23 q^{-6} -16 q^{-5} +10 q^{-4} -4 q^{-3} + q^{-2} (db)
Signature -4 (db)
HOMFLY-PT polynomial a^{12} \left(-z^2\right)+a^{12} z^{-2} +2 a^{12}+a^{10} z^4-6 a^{10} z^2-2 a^{10} z^{-2} -9 a^{10}+6 a^8 z^4+11 a^8 z^2+a^8 z^{-2} +7 a^8+4 a^6 z^4+4 a^6 z^2+a^4 z^4 (db)
Kauffman polynomial z^7 a^{15}-2 z^5 a^{15}+z^3 a^{15}+5 z^8 a^{14}-15 z^6 a^{14}+13 z^4 a^{14}-z^2 a^{14}-2 a^{14}+8 z^9 a^{13}-23 z^7 a^{13}+17 z^5 a^{13}-z^3 a^{13}+4 z^{10} a^{12}+6 z^8 a^{12}-46 z^6 a^{12}+46 z^4 a^{12}-11 z^2 a^{12}-a^{12} z^{-2} +3 a^{12}+21 z^9 a^{11}-53 z^7 a^{11}+26 z^5 a^{11}+9 z^3 a^{11}-9 z a^{11}+2 a^{11} z^{-1} +4 z^{10} a^{10}+20 z^8 a^{10}-76 z^6 a^{10}+70 z^4 a^{10}-33 z^2 a^{10}-2 a^{10} z^{-2} +11 a^{10}+13 z^9 a^9-13 z^7 a^9-17 z^5 a^9+19 z^3 a^9-9 z a^9+2 a^9 z^{-1} +19 z^8 a^8-35 z^6 a^8+28 z^4 a^8-19 z^2 a^8-a^8 z^{-2} +7 a^8+16 z^7 a^7-20 z^5 a^7+8 z^3 a^7+10 z^6 a^6-8 z^4 a^6+4 z^2 a^6+4 z^5 a^5+z^4 a^4 (db)

Khovanov Homology

The coefficients of the monomials t^rq^j are shown, along with their alternating sums \chi (fixed j, alternation over r).   
\ r
  \  
j \
-11-10-9-8-7-6-5-4-3-2-10χ
-3           11
-5          41-3
-7         6  6
-9        104  -6
-11       136   7
-13      1210    -2
-15     1413     1
-17    1014      4
-19   712       -5
-21  411        7
-23 16         -5
-25 4          4
-271           -1
Integral Khovanov Homology

(db, data source)

  
\dim{\mathcal G}_{2r+i}\operatorname{KH}^r_{\mathbb Z} i=-5 i=-3
r=-11 {\mathbb Z}
r=-10 {\mathbb Z}^{4}\oplus{\mathbb Z}_2 {\mathbb Z}
r=-9 {\mathbb Z}^{6}\oplus{\mathbb Z}_2^{4} {\mathbb Z}^{4}
r=-8 {\mathbb Z}^{11}\oplus{\mathbb Z}_2^{6} {\mathbb Z}^{7}
r=-7 {\mathbb Z}^{12}\oplus{\mathbb Z}_2^{10} {\mathbb Z}^{10}
r=-6 {\mathbb Z}^{14}\oplus{\mathbb Z}_2^{12} {\mathbb Z}^{14}
r=-5 {\mathbb Z}^{13}\oplus{\mathbb Z}_2^{12} {\mathbb Z}^{12}
r=-4 {\mathbb Z}^{10}\oplus{\mathbb Z}_2^{13} {\mathbb Z}^{13}
r=-3 {\mathbb Z}^{6}\oplus{\mathbb Z}_2^{10} {\mathbb Z}^{10}
r=-2 {\mathbb Z}^{4}\oplus{\mathbb Z}_2^{6} {\mathbb Z}^{6}
r=-1 {\mathbb Z}_2^{4} {\mathbb Z}^{4}
r=0 {\mathbb Z} {\mathbb Z}

Computer Talk

Much of the above data can be recomputed by Mathematica using the package KnotTheory`. See A Sample KnotTheory` Session.

Modifying This Page

Read me first: Modifying Knot Pages

See/edit the Link Page master template (intermediate).

See/edit the Link_Splice_Base (expert).

Back to the top.

L11a528.gif

L11a528

L11a530.gif

L11a530