L11a54

From Knot Atlas
Jump to: navigation, search

L11a53.gif

L11a53

L11a55.gif

L11a55

Contents

L11a54.gif
(Knotscape image)
See the full Thistlethwaite Link Table (up to 11 crossings).

Visit L11a54 at Knotilus!


Link Presentations

[edit Notes on L11a54's Link Presentations]

Planar diagram presentation X6172 X20,7,21,8 X4,21,1,22 X14,6,15,5 X10,4,11,3 X16,12,17,11 X12,16,13,15 X22,14,5,13 X18,9,19,10 X2,18,3,17 X8,19,9,20
Gauss code {1, -10, 5, -3}, {4, -1, 2, -11, 9, -5, 6, -7, 8, -4, 7, -6, 10, -9, 11, -2, 3, -8}
A Braid Representative
BraidPart1.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart3.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gif
BraidPart2.gifBraidPart1.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart3.gifBraidPart4.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart3.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart1.gif
BraidPart0.gifBraidPart2.gifBraidPart1.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart3.gifBraidPart4.gifBraidPart3.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart3.gifBraidPart4.gifBraidPart3.gifBraidPart0.gifBraidPart3.gifBraidPart0.gifBraidPart0.gifBraidPart3.gifBraidPart2.gif
BraidPart0.gifBraidPart0.gifBraidPart2.gifBraidPart1.gifBraidPart0.gifBraidPart1.gifBraidPart4.gifBraidPart1.gifBraidPart4.gifBraidPart1.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart3.gifBraidPart4.gifBraidPart0.gifBraidPart4.gifBraidPart1.gifBraidPart4.gifBraidPart1.gifBraidPart1.gifBraidPart4.gifBraidPart0.gif
BraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart2.gifBraidPart1.gifBraidPart2.gifBraidPart0.gifBraidPart2.gifBraidPart0.gifBraidPart2.gifBraidPart3.gifBraidPart0.gifBraidPart3.gifBraidPart4.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart2.gifBraidPart1.gifBraidPart2.gifBraidPart2.gifBraidPart0.gifBraidPart0.gif
BraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart2.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart4.gifBraidPart1.gifBraidPart4.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart2.gifBraidPart3.gifBraidPart0.gifBraidPart0.gifBraidPart0.gif
BraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart2.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart4.gifBraidPart0.gifBraidPart0.gifBraidPart0.gif
A Morse Link Presentation L11a54 ML.gif

Polynomial invariants

Multivariable Alexander Polynomial (in u, v, w, ...) \frac{2 (u-1) (v-1) \left(2 v^2-3 v+2\right)}{\sqrt{u} v^{3/2}} (db)
Jones polynomial -8 q^{9/2}+\frac{1}{q^{9/2}}+12 q^{7/2}-\frac{3}{q^{7/2}}-16 q^{5/2}+\frac{6}{q^{5/2}}+18 q^{3/2}-\frac{11}{q^{3/2}}-q^{13/2}+4 q^{11/2}-18 \sqrt{q}+\frac{14}{\sqrt{q}} (db)
Signature 1 (db)
HOMFLY-PT polynomial a z^5+2 z^5 a^{-1} +z^5 a^{-3} -a^3 z^3+a z^3+3 z^3 a^{-1} -z^3 a^{-5} -a^3 z+a z+z a^{-1} -z a^{-3} +a z^{-1} - a^{-1} z^{-1} (db)
Kauffman polynomial z^5 a^{-7} -z^3 a^{-7} +4 z^6 a^{-6} -6 z^4 a^{-6} +7 z^7 a^{-5} -12 z^5 a^{-5} +3 z^3 a^{-5} +8 z^8 a^{-4} +a^4 z^6-16 z^6 a^{-4} -3 a^4 z^4+12 z^4 a^{-4} +2 a^4 z^2-4 z^2 a^{-4} +6 z^9 a^{-3} +3 a^3 z^7-11 z^7 a^{-3} -9 a^3 z^5+11 z^5 a^{-3} +7 a^3 z^3-6 z^3 a^{-3} -2 a^3 z+2 z a^{-3} +2 z^{10} a^{-2} +4 a^2 z^8+6 z^8 a^{-2} -9 a^2 z^6-24 z^6 a^{-2} +3 a^2 z^4+29 z^4 a^{-2} -8 z^2 a^{-2} +4 a z^9+10 z^9 a^{-1} -8 a z^7-29 z^7 a^{-1} +4 a z^5+37 z^5 a^{-1} -a z^3-18 z^3 a^{-1} -2 a z+2 z a^{-1} +a z^{-1} + a^{-1} z^{-1} +2 z^{10}+2 z^8-14 z^6+17 z^4-6 z^2-1 (db)

Khovanov Homology

The coefficients of the monomials t^rq^j are shown, along with their alternating sums \chi (fixed j, alternation over r).   
\ r
  \  
j \
-5-4-3-2-10123456χ
14           11
12          3 -3
10         51 4
8        73  -4
6       95   4
4      97    -2
2     99     0
0    711      4
-2   47       -3
-4  27        5
-6 14         -3
-8 2          2
-101           -1
Integral Khovanov Homology

(db, data source)

  
\dim{\mathcal G}_{2r+i}\operatorname{KH}^r_{\mathbb Z} i=0 i=2
r=-5 {\mathbb Z}
r=-4 {\mathbb Z}^{2}\oplus{\mathbb Z}_2 {\mathbb Z}
r=-3 {\mathbb Z}^{4}\oplus{\mathbb Z}_2^{2} {\mathbb Z}^{2}
r=-2 {\mathbb Z}^{7}\oplus{\mathbb Z}_2^{4} {\mathbb Z}^{4}
r=-1 {\mathbb Z}^{7}\oplus{\mathbb Z}_2^{7} {\mathbb Z}^{7}
r=0 {\mathbb Z}^{11}\oplus{\mathbb Z}_2^{7} {\mathbb Z}^{9}
r=1 {\mathbb Z}^{9}\oplus{\mathbb Z}_2^{9} {\mathbb Z}^{9}
r=2 {\mathbb Z}^{7}\oplus{\mathbb Z}_2^{9} {\mathbb Z}^{9}
r=3 {\mathbb Z}^{5}\oplus{\mathbb Z}_2^{7} {\mathbb Z}^{7}
r=4 {\mathbb Z}^{3}\oplus{\mathbb Z}_2^{5} {\mathbb Z}^{5}
r=5 {\mathbb Z}\oplus{\mathbb Z}_2^{3} {\mathbb Z}^{3}
r=6 {\mathbb Z}_2 {\mathbb Z}

Computer Talk

Much of the above data can be recomputed by Mathematica using the package KnotTheory`. See A Sample KnotTheory` Session.

Modifying This Page

Read me first: Modifying Knot Pages

See/edit the Link Page master template (intermediate).

See/edit the Link_Splice_Base (expert).

Back to the top.

L11a53.gif

L11a53

L11a55.gif

L11a55