L11a55

From Knot Atlas
Jump to: navigation, search

L11a54.gif

L11a54

L11a56.gif

L11a56

Contents

L11a55.gif
(Knotscape image)
See the full Thistlethwaite Link Table (up to 11 crossings).

Visit L11a55 at Knotilus!


Link Presentations

[edit Notes on L11a55's Link Presentations]

Planar diagram presentation X6172 X12,4,13,3 X14,8,15,7 X22,16,5,15 X16,9,17,10 X8,21,9,22 X20,17,21,18 X18,12,19,11 X10,20,11,19 X2536 X4,14,1,13
Gauss code {1, -10, 2, -11}, {10, -1, 3, -6, 5, -9, 8, -2, 11, -3, 4, -5, 7, -8, 9, -7, 6, -4}
A Braid Representative
BraidPart3.gifBraidPart0.gifBraidPart3.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart3.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gif
BraidPart4.gifBraidPart1.gifBraidPart4.gifBraidPart1.gifBraidPart0.gifBraidPart1.gifBraidPart1.gifBraidPart0.gifBraidPart1.gifBraidPart4.gifBraidPart1.gifBraidPart0.gifBraidPart0.gifBraidPart0.gif
BraidPart0.gifBraidPart2.gifBraidPart0.gifBraidPart2.gifBraidPart1.gifBraidPart2.gifBraidPart2.gifBraidPart3.gifBraidPart2.gifBraidPart0.gifBraidPart2.gifBraidPart3.gifBraidPart0.gifBraidPart3.gif
BraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart2.gifBraidPart1.gifBraidPart0.gifBraidPart4.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart4.gifBraidPart3.gifBraidPart4.gif
BraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart2.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart4.gifBraidPart0.gif
A Morse Link Presentation L11a55 ML.gif

Polynomial invariants

Multivariable Alexander Polynomial (in u, v, w, ...) -\frac{(u-1) (v-1) \left(v^4-4 v^3+7 v^2-4 v+1\right)}{\sqrt{u} v^{5/2}} (db)
Jones polynomial -9 q^{9/2}+\frac{1}{q^{9/2}}+14 q^{7/2}-\frac{4}{q^{7/2}}-19 q^{5/2}+\frac{8}{q^{5/2}}+22 q^{3/2}-\frac{14}{q^{3/2}}-q^{13/2}+4 q^{11/2}-22 \sqrt{q}+\frac{18}{\sqrt{q}} (db)
Signature 1 (db)
HOMFLY-PT polynomial -z^7 a^{-1} +2 a z^5-4 z^5 a^{-1} +2 z^5 a^{-3} -a^3 z^3+5 a z^3-9 z^3 a^{-1} +5 z^3 a^{-3} -z^3 a^{-5} -a^3 z+5 a z-9 z a^{-1} +6 z a^{-3} -z a^{-5} +2 a z^{-1} -4 a^{-1} z^{-1} +3 a^{-3} z^{-1} - a^{-5} z^{-1} (db)
Kauffman polynomial -z^{10} a^{-2} -z^{10}-4 a z^9-9 z^9 a^{-1} -5 z^9 a^{-3} -6 a^2 z^8-20 z^8 a^{-2} -9 z^8 a^{-4} -17 z^8-4 a^3 z^7-5 a z^7-z^7 a^{-1} -8 z^7 a^{-3} -8 z^7 a^{-5} -a^4 z^6+12 a^2 z^6+50 z^6 a^{-2} +13 z^6 a^{-4} -4 z^6 a^{-6} +46 z^6+10 a^3 z^5+34 a z^5+45 z^5 a^{-1} +35 z^5 a^{-3} +13 z^5 a^{-5} -z^5 a^{-7} +2 a^4 z^4-5 a^2 z^4-45 z^4 a^{-2} -8 z^4 a^{-4} +5 z^4 a^{-6} -39 z^4-8 a^3 z^3-37 a z^3-58 z^3 a^{-1} -38 z^3 a^{-3} -8 z^3 a^{-5} +z^3 a^{-7} -a^4 z^2+a^2 z^2+17 z^2 a^{-2} +4 z^2 a^{-4} -z^2 a^{-6} +14 z^2+3 a^3 z+15 a z+26 z a^{-1} +18 z a^{-3} +4 z a^{-5} -a^2-3 a^{-2} - a^{-4} -2-2 a z^{-1} -4 a^{-1} z^{-1} -3 a^{-3} z^{-1} - a^{-5} z^{-1} (db)

Khovanov Homology

The coefficients of the monomials t^rq^j are shown, along with their alternating sums \chi (fixed j, alternation over r).   
\ r
  \  
j \
-5-4-3-2-10123456χ
14           11
12          3 -3
10         61 5
8        83  -5
6       116   5
4      118    -3
2     1111     0
0    913      4
-2   59       -4
-4  39        6
-6 15         -4
-8 3          3
-101           -1
Integral Khovanov Homology

(db, data source)

  
\dim{\mathcal G}_{2r+i}\operatorname{KH}^r_{\mathbb Z} i=0 i=2
r=-5 {\mathbb Z}
r=-4 {\mathbb Z}^{3}\oplus{\mathbb Z}_2 {\mathbb Z}
r=-3 {\mathbb Z}^{5}\oplus{\mathbb Z}_2^{3} {\mathbb Z}^{3}
r=-2 {\mathbb Z}^{9}\oplus{\mathbb Z}_2^{5} {\mathbb Z}^{5}
r=-1 {\mathbb Z}^{9}\oplus{\mathbb Z}_2^{9} {\mathbb Z}^{9}
r=0 {\mathbb Z}^{13}\oplus{\mathbb Z}_2^{9} {\mathbb Z}^{11}
r=1 {\mathbb Z}^{11}\oplus{\mathbb Z}_2^{11} {\mathbb Z}^{11}
r=2 {\mathbb Z}^{8}\oplus{\mathbb Z}_2^{11} {\mathbb Z}^{11}
r=3 {\mathbb Z}^{6}\oplus{\mathbb Z}_2^{8} {\mathbb Z}^{8}
r=4 {\mathbb Z}^{3}\oplus{\mathbb Z}_2^{6} {\mathbb Z}^{6}
r=5 {\mathbb Z}\oplus{\mathbb Z}_2^{3} {\mathbb Z}^{3}
r=6 {\mathbb Z}_2 {\mathbb Z}

Computer Talk

Much of the above data can be recomputed by Mathematica using the package KnotTheory`. See A Sample KnotTheory` Session.

Modifying This Page

Read me first: Modifying Knot Pages

See/edit the Link Page master template (intermediate).

See/edit the Link_Splice_Base (expert).

Back to the top.

L11a54.gif

L11a54

L11a56.gif

L11a56