L11a84

From Knot Atlas
Jump to: navigation, search

L11a83.gif

L11a83

L11a85.gif

L11a85

Contents

L11a84.gif
(Knotscape image)
See the full Thistlethwaite Link Table (up to 11 crossings).

Visit L11a84 at Knotilus!


Link Presentations

[edit Notes on L11a84's Link Presentations]

Planar diagram presentation X6172 X12,3,13,4 X18,8,19,7 X22,20,5,19 X20,16,21,15 X16,22,17,21 X14,10,15,9 X10,14,11,13 X8,18,9,17 X2536 X4,11,1,12
Gauss code {1, -10, 2, -11}, {10, -1, 3, -9, 7, -8, 11, -2, 8, -7, 5, -6, 9, -3, 4, -5, 6, -4}
A Braid Representative
BraidPart1.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart3.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gif
BraidPart2.gifBraidPart1.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart3.gifBraidPart4.gifBraidPart0.gifBraidPart0.gifBraidPart3.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart1.gifBraidPart0.gif
BraidPart0.gifBraidPart2.gifBraidPart1.gifBraidPart1.gifBraidPart0.gifBraidPart1.gifBraidPart4.gifBraidPart0.gifBraidPart0.gifBraidPart1.gifBraidPart4.gifBraidPart0.gifBraidPart0.gifBraidPart1.gifBraidPart0.gifBraidPart1.gifBraidPart2.gifBraidPart1.gif
BraidPart0.gifBraidPart0.gifBraidPart2.gifBraidPart2.gifBraidPart1.gifBraidPart2.gifBraidPart3.gifBraidPart0.gifBraidPart3.gifBraidPart2.gifBraidPart3.gifBraidPart0.gifBraidPart3.gifBraidPart2.gifBraidPart3.gifBraidPart2.gifBraidPart0.gifBraidPart2.gif
BraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart2.gifBraidPart1.gifBraidPart4.gifBraidPart3.gifBraidPart4.gifBraidPart0.gifBraidPart4.gifBraidPart1.gifBraidPart4.gifBraidPart3.gifBraidPart4.gifBraidPart0.gifBraidPart0.gifBraidPart0.gif
BraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart2.gifBraidPart1.gifBraidPart4.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart2.gifBraidPart3.gifBraidPart4.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gif
BraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart2.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart4.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gif
A Morse Link Presentation L11a84 ML.gif

Polynomial invariants

Multivariable Alexander Polynomial (in u, v, w, ...) \frac{3 t(1) t(2)^3-5 t(2)^3-9 t(1) t(2)^2+10 t(2)^2+10 t(1) t(2)-9 t(2)-5 t(1)+3}{\sqrt{t(1)} t(2)^{3/2}} (db)
Jones polynomial q^{15/2}-4 q^{13/2}+8 q^{11/2}-12 q^{9/2}+16 q^{7/2}-17 q^{5/2}+17 q^{3/2}-15 \sqrt{q}+\frac{9}{\sqrt{q}}-\frac{6}{q^{3/2}}+\frac{2}{q^{5/2}}-\frac{1}{q^{7/2}} (db)
Signature 1 (db)
HOMFLY-PT polynomial z^5 a^{-1} +2 z^5 a^{-3} -2 a z^3-z^3 a^{-1} +4 z^3 a^{-3} -3 z^3 a^{-5} +a^3 z-2 a z-3 z a^{-1} +4 z a^{-3} -3 z a^{-5} +z a^{-7} +a^3 z^{-1} -2 a^{-1} z^{-1} + a^{-3} z^{-1} (db)
Kauffman polynomial z^6 a^{-8} -2 z^4 a^{-8} +z^2 a^{-8} +4 z^7 a^{-7} -10 z^5 a^{-7} +6 z^3 a^{-7} -z a^{-7} +6 z^8 a^{-6} -14 z^6 a^{-6} +7 z^4 a^{-6} -2 z^2 a^{-6} +4 z^9 a^{-5} -z^7 a^{-5} -17 z^5 a^{-5} +14 z^3 a^{-5} -2 z a^{-5} +z^{10} a^{-4} +11 z^8 a^{-4} -33 z^6 a^{-4} +28 z^4 a^{-4} -7 z^2 a^{-4} -2 a^{-4} +7 z^9 a^{-3} -9 z^7 a^{-3} +a^3 z^5-3 z^5 a^{-3} -3 a^3 z^3+7 z^3 a^{-3} +3 a^3 z-z a^{-3} -a^3 z^{-1} + a^{-3} z^{-1} +z^{10} a^{-2} +8 z^8 a^{-2} +2 a^2 z^6-19 z^6 a^{-2} -3 a^2 z^4+14 z^4 a^{-2} +4 z^2 a^{-2} +a^2-5 a^{-2} +3 z^9 a^{-1} +3 a z^7-z^7 a^{-1} -3 a z^5+2 z^3 a^{-1} -3 z a^{-1} +2 a^{-1} z^{-1} +3 z^8+z^6-8 z^4+8 z^2-3 (db)

Khovanov Homology

The coefficients of the monomials t^rq^j are shown, along with their alternating sums \chi (fixed j, alternation over r).   
\ r
  \  
j \
-4-3-2-101234567χ
16           1-1
14          3 3
12         51 -4
10        73  4
8       95   -4
6      87    1
4     99     0
2    68      -2
0   410       6
-2  25        -3
-4  4         4
-612          -1
-81           1
Integral Khovanov Homology

(db, data source)

  
\dim{\mathcal G}_{2r+i}\operatorname{KH}^r_{\mathbb Z} i=0 i=2
r=-4 {\mathbb Z} {\mathbb Z}
r=-3 {\mathbb Z}^{2}
r=-2 {\mathbb Z}^{4}\oplus{\mathbb Z}_2^{2} {\mathbb Z}^{2}
r=-1 {\mathbb Z}^{5}\oplus{\mathbb Z}_2^{4} {\mathbb Z}^{4}
r=0 {\mathbb Z}^{10}\oplus{\mathbb Z}_2^{5} {\mathbb Z}^{6}
r=1 {\mathbb Z}^{8}\oplus{\mathbb Z}_2^{9} {\mathbb Z}^{9}
r=2 {\mathbb Z}^{9}\oplus{\mathbb Z}_2^{8} {\mathbb Z}^{8}
r=3 {\mathbb Z}^{7}\oplus{\mathbb Z}_2^{9} {\mathbb Z}^{9}
r=4 {\mathbb Z}^{5}\oplus{\mathbb Z}_2^{7} {\mathbb Z}^{7}
r=5 {\mathbb Z}^{3}\oplus{\mathbb Z}_2^{5} {\mathbb Z}^{5}
r=6 {\mathbb Z}\oplus{\mathbb Z}_2^{3} {\mathbb Z}^{3}
r=7 {\mathbb Z}_2 {\mathbb Z}

Computer Talk

Much of the above data can be recomputed by Mathematica using the package KnotTheory`. See A Sample KnotTheory` Session.

Modifying This Page

Read me first: Modifying Knot Pages

See/edit the Link Page master template (intermediate).

See/edit the Link_Splice_Base (expert).

Back to the top.

L11a83.gif

L11a83

L11a85.gif

L11a85