From Knot Atlas
Jump to: navigation, search






(Knotscape image)
See the full Thistlethwaite Link Table (up to 11 crossings).

Visit L11a85 at Knotilus!

Link Presentations

[edit Notes on L11a85's Link Presentations]

Planar diagram presentation X6172 X12,3,13,4 X14,10,15,9 X10,14,11,13 X20,15,21,16 X18,7,19,8 X8,19,9,20 X22,17,5,18 X16,21,17,22 X2536 X4,11,1,12
Gauss code {1, -10, 2, -11}, {10, -1, 6, -7, 3, -4, 11, -2, 4, -3, 5, -9, 8, -6, 7, -5, 9, -8}
A Braid Representative
A Morse Link Presentation L11a85 ML.gif

Polynomial invariants

Multivariable Alexander Polynomial (in u, v, w, ...) \frac{u v^5-4 u v^4+5 u v^3-5 u v^2+4 u v-2 u-2 v^5+4 v^4-5 v^3+5 v^2-4 v+1}{\sqrt{u} v^{5/2}} (db)
Jones polynomial -\frac{12}{q^{9/2}}+\frac{9}{q^{7/2}}-\frac{6}{q^{5/2}}+\frac{3}{q^{3/2}}+\frac{1}{q^{23/2}}-\frac{2}{q^{21/2}}+\frac{5}{q^{19/2}}-\frac{8}{q^{17/2}}+\frac{11}{q^{15/2}}-\frac{14}{q^{13/2}}+\frac{12}{q^{11/2}}-\frac{1}{\sqrt{q}} (db)
Signature -5 (db)
HOMFLY-PT polynomial -z a^{11}-2 a^{11} z^{-1} +3 z^3 a^9+9 z a^9+5 a^9 z^{-1} -3 z^5 a^7-11 z^3 a^7-11 z a^7-3 a^7 z^{-1} +z^7 a^5+4 z^5 a^5+5 z^3 a^5+3 z a^5-z^5 a^3-3 z^3 a^3-2 z a^3 (db)
Kauffman polynomial a^{14} z^4-2 a^{14} z^2+a^{14}+2 a^{13} z^5-2 a^{13} z^3+3 a^{12} z^6-2 a^{12} z^4+4 a^{11} z^7-5 a^{11} z^5+6 a^{11} z^3-5 a^{11} z+2 a^{11} z^{-1} +4 a^{10} z^8-4 a^{10} z^6-3 a^{10} z^4+10 a^{10} z^2-5 a^{10}+3 a^9 z^9-a^9 z^7-12 a^9 z^5+20 a^9 z^3-14 a^9 z+5 a^9 z^{-1} +a^8 z^{10}+6 a^8 z^8-22 a^8 z^6+15 a^8 z^4+3 a^8 z^2-5 a^8+6 a^7 z^9-14 a^7 z^7-a^7 z^5+13 a^7 z^3-8 a^7 z+3 a^7 z^{-1} +a^6 z^{10}+5 a^6 z^8-27 a^6 z^6+29 a^6 z^4-10 a^6 z^2+3 a^5 z^9-8 a^5 z^7+6 a^5 z^3-a^5 z+3 a^4 z^8-12 a^4 z^6+14 a^4 z^4-5 a^4 z^2+a^3 z^7-4 a^3 z^5+5 a^3 z^3-2 a^3 z (db)

Khovanov Homology

The coefficients of the monomials t^rq^j are shown, along with their alternating sums \chi (fixed j, alternation over r).   
\ r
j \
0           11
-2          2 -2
-4         41 3
-6        63  -3
-8       63   3
-10      66    0
-12     86     2
-14    47      3
-16   47       -3
-18  14        3
-20 14         -3
-22 1          1
-241           -1
Integral Khovanov Homology

(db, data source)

\dim{\mathcal G}_{2r+i}\operatorname{KH}^r_{\mathbb Z} i=-6 i=-4
r=-9 {\mathbb Z}
r=-8 {\mathbb Z}\oplus{\mathbb Z}_2 {\mathbb Z}
r=-7 {\mathbb Z}^{4}\oplus{\mathbb Z}_2 {\mathbb Z}
r=-6 {\mathbb Z}^{4}\oplus{\mathbb Z}_2^{4} {\mathbb Z}^{4}
r=-5 {\mathbb Z}^{7}\oplus{\mathbb Z}_2^{4} {\mathbb Z}^{4}
r=-4 {\mathbb Z}^{7}\oplus{\mathbb Z}_2^{7} {\mathbb Z}^{8}
r=-3 {\mathbb Z}^{6}\oplus{\mathbb Z}_2^{6} {\mathbb Z}^{6}
r=-2 {\mathbb Z}^{6}\oplus{\mathbb Z}_2^{6} {\mathbb Z}^{6}
r=-1 {\mathbb Z}^{3}\oplus{\mathbb Z}_2^{6} {\mathbb Z}^{6}
r=0 {\mathbb Z}^{3}\oplus{\mathbb Z}_2^{3} {\mathbb Z}^{4}
r=1 {\mathbb Z}\oplus{\mathbb Z}_2^{2} {\mathbb Z}^{2}
r=2 {\mathbb Z}_2 {\mathbb Z}

Computer Talk

Much of the above data can be recomputed by Mathematica using the package KnotTheory`. See A Sample KnotTheory` Session.

Modifying This Page

Read me first: Modifying Knot Pages

See/edit the Link Page master template (intermediate).

See/edit the Link_Splice_Base (expert).

Back to the top.