L11a88

From Knot Atlas
Jump to: navigation, search

L11a87.gif

L11a87

L11a89.gif

L11a89

Contents

L11a88.gif
(Knotscape image)
See the full Thistlethwaite Link Table (up to 11 crossings).

Visit L11a88 at Knotilus!


Link Presentations

[edit Notes on L11a88's Link Presentations]

Planar diagram presentation X6172 X12,3,13,4 X18,8,19,7 X22,20,5,19 X20,14,21,13 X14,22,15,21 X16,10,17,9 X10,16,11,15 X8,18,9,17 X2536 X4,11,1,12
Gauss code {1, -10, 2, -11}, {10, -1, 3, -9, 7, -8, 11, -2, 5, -6, 8, -7, 9, -3, 4, -5, 6, -4}
A Braid Representative
BraidPart1.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart3.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gif
BraidPart2.gifBraidPart1.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart3.gifBraidPart4.gifBraidPart1.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart3.gifBraidPart0.gifBraidPart0.gifBraidPart0.gif
BraidPart0.gifBraidPart2.gifBraidPart1.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart1.gifBraidPart1.gifBraidPart4.gifBraidPart1.gifBraidPart2.gifBraidPart1.gifBraidPart0.gifBraidPart1.gifBraidPart4.gifBraidPart0.gifBraidPart0.gifBraidPart1.gif
BraidPart0.gifBraidPart0.gifBraidPart2.gifBraidPart3.gifBraidPart0.gifBraidPart3.gifBraidPart2.gifBraidPart2.gifBraidPart3.gifBraidPart2.gifBraidPart0.gifBraidPart2.gifBraidPart1.gifBraidPart2.gifBraidPart3.gifBraidPart0.gifBraidPart3.gifBraidPart2.gif
BraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart4.gifBraidPart3.gifBraidPart4.gifBraidPart3.gifBraidPart0.gifBraidPart4.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart2.gifBraidPart1.gifBraidPart4.gifBraidPart1.gifBraidPart4.gifBraidPart0.gif
BraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart4.gifBraidPart3.gifBraidPart4.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart2.gifBraidPart1.gifBraidPart2.gifBraidPart0.gifBraidPart0.gif
BraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart4.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart2.gifBraidPart0.gifBraidPart0.gifBraidPart0.gif
A Morse Link Presentation L11a88 ML.gif

Polynomial invariants

Multivariable Alexander Polynomial (in u, v, w, ...) \frac{2 u v^3-7 u v^2+9 u v-5 u-5 v^3+9 v^2-7 v+2}{\sqrt{u} v^{3/2}} (db)
Jones polynomial -9 q^{9/2}+13 q^{7/2}-\frac{1}{q^{7/2}}-15 q^{5/2}+\frac{2}{q^{5/2}}+14 q^{3/2}-\frac{6}{q^{3/2}}+q^{15/2}-3 q^{13/2}+6 q^{11/2}-13 \sqrt{q}+\frac{9}{\sqrt{q}} (db)
Signature 1 (db)
HOMFLY-PT polynomial z a^{-7} -2 z^3 a^{-5} -z a^{-5} + a^{-5} z^{-1} +z^5 a^{-3} +a^3 z-z a^{-3} +a^3 z^{-1} -2 a^{-3} z^{-1} +z^5 a^{-1} -2 a z^3-2 a z-a z^{-1} + a^{-1} z^{-1} (db)
Kauffman polynomial z^6 a^{-8} -3 z^4 a^{-8} +z^2 a^{-8} +3 z^7 a^{-7} -9 z^5 a^{-7} +5 z^3 a^{-7} -z a^{-7} +5 z^8 a^{-6} -17 z^6 a^{-6} +18 z^4 a^{-6} -10 z^2 a^{-6} +3 a^{-6} +4 z^9 a^{-5} -10 z^7 a^{-5} +5 z^5 a^{-5} +z^3 a^{-5} +z a^{-5} - a^{-5} z^{-1} +z^{10} a^{-4} +8 z^8 a^{-4} -38 z^6 a^{-4} +58 z^4 a^{-4} -34 z^2 a^{-4} +7 a^{-4} +7 z^9 a^{-3} -21 z^7 a^{-3} +a^3 z^5+30 z^5 a^{-3} -3 a^3 z^3-21 z^3 a^{-3} +3 a^3 z+9 z a^{-3} -a^3 z^{-1} -2 a^{-3} z^{-1} +z^{10} a^{-2} +6 z^8 a^{-2} +2 a^2 z^6-23 z^6 a^{-2} -3 a^2 z^4+37 z^4 a^{-2} -23 z^2 a^{-2} +a^2+4 a^{-2} +3 z^9 a^{-1} +3 a z^7-5 z^7 a^{-1} -3 a z^5+12 z^5 a^{-1} -2 a z^3-16 z^3 a^{-1} +3 a z+7 z a^{-1} -a z^{-1} - a^{-1} z^{-1} +3 z^8-z^6-3 z^4 (db)

Khovanov Homology

The coefficients of the monomials t^rq^j are shown, along with their alternating sums \chi (fixed j, alternation over r).   
\ r
  \  
j \
-4-3-2-101234567χ
16           1-1
14          2 2
12         41 -3
10        52  3
8       84   -4
6      75    2
4     78     1
2    67      -1
0   48       4
-2  25        -3
-4  4         4
-612          -1
-81           1
Integral Khovanov Homology

(db, data source)

  
\dim{\mathcal G}_{2r+i}\operatorname{KH}^r_{\mathbb Z} i=0 i=2
r=-4 {\mathbb Z} {\mathbb Z}
r=-3 {\mathbb Z}^{2}
r=-2 {\mathbb Z}^{4}\oplus{\mathbb Z}_2^{2} {\mathbb Z}^{2}
r=-1 {\mathbb Z}^{5}\oplus{\mathbb Z}_2^{4} {\mathbb Z}^{4}
r=0 {\mathbb Z}^{8}\oplus{\mathbb Z}_2^{5} {\mathbb Z}^{6}
r=1 {\mathbb Z}^{7}\oplus{\mathbb Z}_2^{7} {\mathbb Z}^{7}
r=2 {\mathbb Z}^{8}\oplus{\mathbb Z}_2^{7} {\mathbb Z}^{7}
r=3 {\mathbb Z}^{5}\oplus{\mathbb Z}_2^{8} {\mathbb Z}^{8}
r=4 {\mathbb Z}^{4}\oplus{\mathbb Z}_2^{5} {\mathbb Z}^{5}
r=5 {\mathbb Z}^{2}\oplus{\mathbb Z}_2^{4} {\mathbb Z}^{4}
r=6 {\mathbb Z}\oplus{\mathbb Z}_2^{2} {\mathbb Z}^{2}
r=7 {\mathbb Z}_2 {\mathbb Z}

Computer Talk

Much of the above data can be recomputed by Mathematica using the package KnotTheory`. See A Sample KnotTheory` Session.

Modifying This Page

Read me first: Modifying Knot Pages

See/edit the Link Page master template (intermediate).

See/edit the Link_Splice_Base (expert).

Back to the top.

L11a87.gif

L11a87

L11a89.gif

L11a89