L11a89

From Knot Atlas
Jump to: navigation, search

L11a88.gif

L11a88

L11a90.gif

L11a90

Contents

L11a89.gif
(Knotscape image)
See the full Thistlethwaite Link Table (up to 11 crossings).

Visit L11a89 at Knotilus!


Link Presentations

[edit Notes on L11a89's Link Presentations]

Planar diagram presentation X6172 X12,3,13,4 X16,10,17,9 X22,13,5,14 X14,21,15,22 X10,16,11,15 X20,17,21,18 X18,7,19,8 X8,19,9,20 X2536 X4,11,1,12
Gauss code {1, -10, 2, -11}, {10, -1, 8, -9, 3, -6, 11, -2, 4, -5, 6, -3, 7, -8, 9, -7, 5, -4}
A Braid Representative
BraidPart1.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart3.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gif
BraidPart2.gifBraidPart1.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart3.gifBraidPart4.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart1.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart1.gifBraidPart0.gifBraidPart0.gifBraidPart0.gif
BraidPart0.gifBraidPart2.gifBraidPart3.gifBraidPart0.gifBraidPart3.gifBraidPart0.gifBraidPart3.gifBraidPart4.gifBraidPart3.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart3.gifBraidPart3.gifBraidPart2.gifBraidPart3.gifBraidPart0.gifBraidPart3.gifBraidPart2.gifBraidPart0.gifBraidPart0.gifBraidPart3.gif
BraidPart0.gifBraidPart0.gifBraidPart4.gifBraidPart3.gifBraidPart4.gifBraidPart1.gifBraidPart4.gifBraidPart0.gifBraidPart4.gifBraidPart3.gifBraidPart0.gifBraidPart1.gifBraidPart4.gifBraidPart4.gifBraidPart0.gifBraidPart4.gifBraidPart3.gifBraidPart4.gifBraidPart0.gifBraidPart0.gifBraidPart1.gifBraidPart4.gif
BraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart4.gifBraidPart1.gifBraidPart2.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart4.gifBraidPart1.gifBraidPart2.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart4.gifBraidPart3.gifBraidPart0.gifBraidPart3.gifBraidPart2.gifBraidPart0.gif
BraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart2.gifBraidPart3.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart2.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart4.gifBraidPart1.gifBraidPart4.gifBraidPart0.gifBraidPart0.gif
BraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart4.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart2.gifBraidPart0.gifBraidPart0.gifBraidPart0.gif
A Morse Link Presentation L11a89 ML.gif

Polynomial invariants

Multivariable Alexander Polynomial (in u, v, w, ...) \frac{2 u v^4-8 u v^3+10 u v^2-6 u v+u+v^5-6 v^4+10 v^3-8 v^2+2 v}{\sqrt{u} v^{5/2}} (db)
Jones polynomial -\sqrt{q}+\frac{3}{\sqrt{q}}-\frac{7}{q^{3/2}}+\frac{11}{q^{5/2}}-\frac{15}{q^{7/2}}+\frac{17}{q^{9/2}}-\frac{18}{q^{11/2}}+\frac{14}{q^{13/2}}-\frac{11}{q^{15/2}}+\frac{7}{q^{17/2}}-\frac{3}{q^{19/2}}+\frac{1}{q^{21/2}} (db)
Signature -3 (db)
HOMFLY-PT polynomial -a^{11} z^{-1} +4 z a^9+3 a^9 z^{-1} -5 z^3 a^7-8 z a^7-3 a^7 z^{-1} +2 z^5 a^5+4 z^3 a^5+5 z a^5+2 a^5 z^{-1} +z^5 a^3-2 z a^3-a^3 z^{-1} -z^3 a-z a (db)
Kauffman polynomial -z^6 a^{12}+3 z^4 a^{12}-3 z^2 a^{12}+a^{12}-3 z^7 a^{11}+8 z^5 a^{11}-6 z^3 a^{11}+3 z a^{11}-a^{11} z^{-1} -4 z^8 a^{10}+7 z^6 a^{10}+2 z^4 a^{10}-4 z^2 a^{10}+2 a^{10}-3 z^9 a^9-z^7 a^9+19 z^5 a^9-22 z^3 a^9+12 z a^9-3 a^9 z^{-1} -z^{10} a^8-9 z^8 a^8+28 z^6 a^8-26 z^4 a^8+9 z^2 a^8-7 z^9 a^7+8 z^7 a^7+14 z^5 a^7-32 z^3 a^7+16 z a^7-3 a^7 z^{-1} -z^{10} a^6-11 z^8 a^6+34 z^6 a^6-40 z^4 a^6+16 z^2 a^6-2 a^6-4 z^9 a^5+z^7 a^5+12 z^5 a^5-22 z^3 a^5+12 z a^5-2 a^5 z^{-1} -6 z^8 a^4+11 z^6 a^4-10 z^4 a^4+5 z^2 a^4-5 z^7 a^3+8 z^5 a^3-4 z^3 a^3+4 z a^3-a^3 z^{-1} -3 z^6 a^2+5 z^4 a^2-z^2 a^2-z^5 a+2 z^3 a-z a (db)

Khovanov Homology

The coefficients of the monomials t^rq^j are shown, along with their alternating sums \chi (fixed j, alternation over r).   
\ r
  \  
j \
-9-8-7-6-5-4-3-2-1012χ
2           11
0          2 -2
-2         51 4
-4        73  -4
-6       84   4
-8      97    -2
-10     98     1
-12    610      4
-14   58       -3
-16  26        4
-18 15         -4
-20 2          2
-221           -1
Integral Khovanov Homology

(db, data source)

  
\dim{\mathcal G}_{2r+i}\operatorname{KH}^r_{\mathbb Z} i=-4 i=-2
r=-9 {\mathbb Z}
r=-8 {\mathbb Z}^{2}\oplus{\mathbb Z}_2 {\mathbb Z}
r=-7 {\mathbb Z}^{5}\oplus{\mathbb Z}_2^{2} {\mathbb Z}^{2}
r=-6 {\mathbb Z}^{6}\oplus{\mathbb Z}_2^{5} {\mathbb Z}^{5}
r=-5 {\mathbb Z}^{8}\oplus{\mathbb Z}_2^{6} {\mathbb Z}^{6}
r=-4 {\mathbb Z}^{10}\oplus{\mathbb Z}_2^{8} {\mathbb Z}^{9}
r=-3 {\mathbb Z}^{8}\oplus{\mathbb Z}_2^{9} {\mathbb Z}^{9}
r=-2 {\mathbb Z}^{7}\oplus{\mathbb Z}_2^{8} {\mathbb Z}^{8}
r=-1 {\mathbb Z}^{4}\oplus{\mathbb Z}_2^{7} {\mathbb Z}^{7}
r=0 {\mathbb Z}^{3}\oplus{\mathbb Z}_2^{4} {\mathbb Z}^{5}
r=1 {\mathbb Z}\oplus{\mathbb Z}_2^{2} {\mathbb Z}^{2}
r=2 {\mathbb Z}_2 {\mathbb Z}

Computer Talk

Much of the above data can be recomputed by Mathematica using the package KnotTheory`. See A Sample KnotTheory` Session.

Modifying This Page

Read me first: Modifying Knot Pages

See/edit the Link Page master template (intermediate).

See/edit the Link_Splice_Base (expert).

Back to the top.

L11a88.gif

L11a88

L11a90.gif

L11a90