L11a90

From Knot Atlas
Jump to: navigation, search

L11a89.gif

L11a89

L11a91.gif

L11a91

Contents

L11a90.gif
(Knotscape image)
See the full Thistlethwaite Link Table (up to 11 crossings).

Visit L11a90 at Knotilus!


Link Presentations

[edit Notes on L11a90's Link Presentations]

Planar diagram presentation X6172 X12,4,13,3 X18,8,19,7 X20,10,21,9 X22,15,5,16 X8,20,9,19 X16,21,17,22 X14,12,15,11 X10,18,11,17 X2536 X4,14,1,13
Gauss code {1, -10, 2, -11}, {10, -1, 3, -6, 4, -9, 8, -2, 11, -8, 5, -7, 9, -3, 6, -4, 7, -5}
A Braid Representative
BraidPart1.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart3.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gif
BraidPart2.gifBraidPart1.gifBraidPart1.gifBraidPart1.gifBraidPart0.gifBraidPart1.gifBraidPart4.gifBraidPart1.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart1.gifBraidPart1.gifBraidPart0.gifBraidPart0.gif
BraidPart0.gifBraidPart2.gifBraidPart2.gifBraidPart2.gifBraidPart3.gifBraidPart2.gifBraidPart0.gifBraidPart2.gifBraidPart3.gifBraidPart0.gifBraidPart3.gifBraidPart2.gifBraidPart2.gifBraidPart3.gifBraidPart0.gif
BraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart4.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart4.gifBraidPart1.gifBraidPart4.gifBraidPart0.gifBraidPart0.gifBraidPart4.gifBraidPart3.gif
BraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart2.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart4.gif
A Morse Link Presentation L11a90 ML.gif

Polynomial invariants

Multivariable Alexander Polynomial (in u, v, w, ...) \frac{(t(1)-1) (t(2)-1) \left(t(2)^4-4 t(2)^3+3 t(2)^2-4 t(2)+1\right)}{\sqrt{t(1)} t(2)^{5/2}} (db)
Jones polynomial q^{17/2}-4 q^{15/2}+8 q^{13/2}-12 q^{11/2}+15 q^{9/2}-17 q^{7/2}+16 q^{5/2}-13 q^{3/2}+9 \sqrt{q}-\frac{6}{\sqrt{q}}+\frac{2}{q^{3/2}}-\frac{1}{q^{5/2}} (db)
Signature 3 (db)
HOMFLY-PT polynomial z^7 a^{-3} -2 z^5 a^{-1} +4 z^5 a^{-3} -2 z^5 a^{-5} +a z^3-7 z^3 a^{-1} +7 z^3 a^{-3} -5 z^3 a^{-5} +z^3 a^{-7} +3 a z-8 z a^{-1} +7 z a^{-3} -3 z a^{-5} +z a^{-7} +2 a z^{-1} -4 a^{-1} z^{-1} +3 a^{-3} z^{-1} - a^{-5} z^{-1} (db)
Kauffman polynomial -z^{10} a^{-2} -z^{10} a^{-4} -2 z^9 a^{-1} -6 z^9 a^{-3} -4 z^9 a^{-5} -4 z^8 a^{-2} -10 z^8 a^{-4} -8 z^8 a^{-6} -2 z^8-a z^7+2 z^7 a^{-1} +8 z^7 a^{-3} -5 z^7 a^{-5} -10 z^7 a^{-7} +17 z^6 a^{-2} +25 z^6 a^{-4} +7 z^6 a^{-6} -8 z^6 a^{-8} +7 z^6+5 a z^5+13 z^5 a^{-1} +14 z^5 a^{-3} +23 z^5 a^{-5} +13 z^5 a^{-7} -4 z^5 a^{-9} -9 z^4 a^{-2} -9 z^4 a^{-4} +3 z^4 a^{-6} +8 z^4 a^{-8} -z^4 a^{-10} -6 z^4-9 a z^3-26 z^3 a^{-1} -24 z^3 a^{-3} -15 z^3 a^{-5} -6 z^3 a^{-7} +2 z^3 a^{-9} -7 z^2 a^{-2} -6 z^2 a^{-4} -2 z^2 a^{-6} -2 z^2 a^{-8} -z^2+7 a z+17 z a^{-1} +13 z a^{-3} +4 z a^{-5} +z a^{-7} +3 a^{-2} +3 a^{-4} + a^{-6} +2-2 a z^{-1} -4 a^{-1} z^{-1} -3 a^{-3} z^{-1} - a^{-5} z^{-1} (db)

Khovanov Homology

The coefficients of the monomials t^rq^j are shown, along with their alternating sums \chi (fixed j, alternation over r).   
\ r
  \  
j \
-4-3-2-101234567χ
18           1-1
16          3 3
14         51 -4
12        73  4
10       85   -3
8      97    2
6     78     1
4    69      -3
2   59       4
0  14        -3
-2 15         4
-4 1          -1
-61           1
Integral Khovanov Homology

(db, data source)

  
\dim{\mathcal G}_{2r+i}\operatorname{KH}^r_{\mathbb Z} i=2 i=4
r=-4 {\mathbb Z}
r=-3 {\mathbb Z}\oplus{\mathbb Z}_2 {\mathbb Z}
r=-2 {\mathbb Z}^{5}\oplus{\mathbb Z}_2 {\mathbb Z}
r=-1 {\mathbb Z}^{4}\oplus{\mathbb Z}_2^{5} {\mathbb Z}^{5}
r=0 {\mathbb Z}^{9}\oplus{\mathbb Z}_2^{4} {\mathbb Z}^{6}
r=1 {\mathbb Z}^{9}\oplus{\mathbb Z}_2^{7} {\mathbb Z}^{7}
r=2 {\mathbb Z}^{8}\oplus{\mathbb Z}_2^{9} {\mathbb Z}^{9}
r=3 {\mathbb Z}^{7}\oplus{\mathbb Z}_2^{8} {\mathbb Z}^{8}
r=4 {\mathbb Z}^{5}\oplus{\mathbb Z}_2^{7} {\mathbb Z}^{7}
r=5 {\mathbb Z}^{3}\oplus{\mathbb Z}_2^{5} {\mathbb Z}^{5}
r=6 {\mathbb Z}\oplus{\mathbb Z}_2^{3} {\mathbb Z}^{3}
r=7 {\mathbb Z}_2 {\mathbb Z}

Computer Talk

Much of the above data can be recomputed by Mathematica using the package KnotTheory`. See A Sample KnotTheory` Session.

Modifying This Page

Read me first: Modifying Knot Pages

See/edit the Link Page master template (intermediate).

See/edit the Link_Splice_Base (expert).

Back to the top.

L11a89.gif

L11a89

L11a91.gif

L11a91