L11n12

From Knot Atlas
Jump to: navigation, search

L11n11.gif

L11n11

L11n13.gif

L11n13

Contents

L11n12.gif
(Knotscape image)
See the full Thistlethwaite Link Table (up to 11 crossings).

Visit L11n12 at Knotilus!


Link Presentations

[edit Notes on L11n12's Link Presentations]

Planar diagram presentation X6172 X16,7,17,8 X4,17,1,18 X5,10,6,11 X8493 X13,22,14,5 X11,20,12,21 X21,12,22,13 X19,14,20,15 X9,18,10,19 X2,16,3,15
Gauss code {1, -11, 5, -3}, {-4, -1, 2, -5, -10, 4, -7, 8, -6, 9, 11, -2, 3, 10, -9, 7, -8, 6}
A Braid Representative
BraidPart1.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart3.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gif
BraidPart2.gifBraidPart1.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart3.gifBraidPart4.gifBraidPart3.gifBraidPart0.gifBraidPart3.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart3.gif
BraidPart0.gifBraidPart2.gifBraidPart3.gifBraidPart3.gifBraidPart3.gifBraidPart0.gifBraidPart3.gifBraidPart4.gifBraidPart1.gifBraidPart4.gifBraidPart1.gifBraidPart4.gifBraidPart3.gifBraidPart0.gifBraidPart3.gifBraidPart4.gif
BraidPart0.gifBraidPart0.gifBraidPart4.gifBraidPart4.gifBraidPart4.gifBraidPart1.gifBraidPart4.gifBraidPart0.gifBraidPart2.gifBraidPart0.gifBraidPart2.gifBraidPart0.gifBraidPart4.gifBraidPart3.gifBraidPart4.gifBraidPart0.gif
BraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart2.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart4.gifBraidPart0.gifBraidPart0.gif
A Morse Link Presentation L11n12 ML.gif

Polynomial invariants

Multivariable Alexander Polynomial (in u, v, w, ...) \frac{(u-1) (v-1) \left(v^2-v+1\right)}{\sqrt{u} v^{3/2}} (db)
Jones polynomial \frac{3}{q^{9/2}}-\frac{3}{q^{7/2}}-\frac{1}{q^{3/2}}+\frac{1}{q^{21/2}}-\frac{2}{q^{19/2}}+\frac{3}{q^{17/2}}-\frac{3}{q^{15/2}}+\frac{4}{q^{13/2}}-\frac{4}{q^{11/2}} (db)
Signature -3 (db)
HOMFLY-PT polynomial a^9 \left(-z^3\right)-2 a^9 z-a^9 z^{-1} +a^7 z^5+4 a^7 z^3+5 a^7 z+a^7 z^{-1} -a^5 z^3+2 a^5 z^{-1} -a^3 z^3-3 a^3 z-2 a^3 z^{-1} (db)
Kauffman polynomial a^{12} z^6-4 a^{12} z^4+3 a^{12} z^2-a^{12}+2 a^{11} z^7-8 a^{11} z^5+6 a^{11} z^3-a^{11} z+2 a^{10} z^8-8 a^{10} z^6+6 a^{10} z^4+a^9 z^9-3 a^9 z^7-a^9 z^5+4 a^9 z^3-a^9 z^{-1} +3 a^8 z^8-15 a^8 z^6+23 a^8 z^4-13 a^8 z^2+3 a^8+a^7 z^9-5 a^7 z^7+8 a^7 z^5-5 a^7 z^3+4 a^7 z-a^7 z^{-1} +a^6 z^8-6 a^6 z^6+13 a^6 z^4-8 a^6 z^2+a^5 z^5-2 a^5 z^3+2 a^5 z^{-1} +2 a^4 z^2-3 a^4+a^3 z^3-3 a^3 z+2 a^3 z^{-1} (db)

Khovanov Homology

The coefficients of the monomials t^rq^j are shown, along with their alternating sums \chi (fixed j, alternation over r).   
\ r
  \  
j \
-9-8-7-6-5-4-3-2-10χ
-2         11
-4        121
-6       2 13
-8      22  0
-10     32   1
-12    231   0
-14   23     -1
-16  121     0
-18 12       -1
-20 1        1
-221         -1
Integral Khovanov Homology

(db, data source)

  
\dim{\mathcal G}_{2r+i}\operatorname{KH}^r_{\mathbb Z} i=-6 i=-4 i=-2
r=-9 {\mathbb Z}
r=-8 {\mathbb Z}\oplus{\mathbb Z}_2 {\mathbb Z}
r=-7 {\mathbb Z}^{2}\oplus{\mathbb Z}_2 {\mathbb Z}
r=-6 {\mathbb Z}^{2}\oplus{\mathbb Z}_2^{2} {\mathbb Z}^{2}
r=-5 {\mathbb Z} {\mathbb Z}^{3}\oplus{\mathbb Z}_2^{2} {\mathbb Z}^{2}
r=-4 {\mathbb Z}_2 {\mathbb Z}^{3}\oplus{\mathbb Z}_2^{3} {\mathbb Z}^{3}
r=-3 {\mathbb Z} {\mathbb Z}^{2}\oplus{\mathbb Z}_2^{2} {\mathbb Z}^{2}
r=-2 {\mathbb Z}_2 {\mathbb Z}^{2}\oplus{\mathbb Z}_2^{2} {\mathbb Z}^{2}
r=-1 {\mathbb Z}_2 {\mathbb Z}
r=0 {\mathbb Z} {\mathbb Z}^{2} {\mathbb Z}

Computer Talk

Much of the above data can be recomputed by Mathematica using the package KnotTheory`. See A Sample KnotTheory` Session.

Modifying This Page

Read me first: Modifying Knot Pages

See/edit the Link Page master template (intermediate).

See/edit the Link_Splice_Base (expert).

Back to the top.

L11n11.gif

L11n11

L11n13.gif

L11n13