L11n13

From Knot Atlas
Jump to: navigation, search

L11n12.gif

L11n12

L11n14.gif

L11n14

Contents

L11n13.gif
(Knotscape image)
See the full Thistlethwaite Link Table (up to 11 crossings).

Visit L11n13 at Knotilus!


Link Presentations

[edit Notes on L11n13's Link Presentations]

Planar diagram presentation X6172 X16,7,17,8 X4,17,1,18 X5,10,6,11 X3849 X11,22,12,5 X13,20,14,21 X19,14,20,15 X21,12,22,13 X9,18,10,19 X15,2,16,3
Gauss code {1, 11, -5, -3}, {-4, -1, 2, 5, -10, 4, -6, 9, -7, 8, -11, -2, 3, 10, -8, 7, -9, 6}
A Braid Representative
BraidPart1.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart3.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gif
BraidPart2.gifBraidPart1.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart3.gifBraidPart4.gifBraidPart3.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart1.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gif
BraidPart0.gifBraidPart2.gifBraidPart1.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart3.gifBraidPart4.gifBraidPart3.gifBraidPart4.gifBraidPart3.gifBraidPart0.gifBraidPart3.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart3.gifBraidPart2.gifBraidPart1.gifBraidPart0.gifBraidPart0.gifBraidPart0.gif
BraidPart0.gifBraidPart0.gifBraidPart2.gifBraidPart3.gifBraidPart0.gifBraidPart3.gifBraidPart4.gifBraidPart0.gifBraidPart4.gifBraidPart3.gifBraidPart4.gifBraidPart3.gifBraidPart4.gifBraidPart3.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart3.gifBraidPart4.gifBraidPart0.gifBraidPart2.gifBraidPart3.gifBraidPart0.gifBraidPart3.gif
BraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart4.gifBraidPart1.gifBraidPart4.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart4.gifBraidPart0.gifBraidPart4.gifBraidPart0.gifBraidPart4.gifBraidPart3.gifBraidPart0.gifBraidPart1.gifBraidPart4.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart4.gifBraidPart3.gifBraidPart4.gif
BraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart2.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart4.gifBraidPart1.gifBraidPart2.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart4.gifBraidPart3.gif
BraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart2.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart4.gif
A Morse Link Presentation L11n13 ML.gif

Polynomial invariants

Multivariable Alexander Polynomial (in u, v, w, ...) -\frac{3 u v^3-2 u v^2-2 v+3}{\sqrt{u} v^{3/2}} (db)
Jones polynomial -\frac{2}{q^{9/2}}+\frac{1}{q^{7/2}}-\frac{1}{q^{5/2}}+\frac{1}{q^{23/2}}-\frac{1}{q^{21/2}}+\frac{2}{q^{19/2}}-\frac{3}{q^{17/2}}+\frac{3}{q^{15/2}}-\frac{4}{q^{13/2}}+\frac{2}{q^{11/2}} (db)
Signature -5 (db)
HOMFLY-PT polynomial -a^{13} z^{-1} +a^{11} z^3+4 a^{11} z+2 a^{11} z^{-1} -a^9 z^5-4 a^9 z^3-3 a^9 z-a^9 z^{-1} -a^7 z^5-3 a^7 z^3+a^7 z^{-1} -a^5 z^5-4 a^5 z^3-3 a^5 z-a^5 z^{-1} (db)
Kauffman polynomial -z^4 a^{14}+4 z^2 a^{14}-3 a^{14}-z^5 a^{13}+3 z^3 a^{13}-2 z a^{13}+a^{13} z^{-1} -z^8 a^{12}+7 z^6 a^{12}-19 z^4 a^{12}+21 z^2 a^{12}-7 a^{12}-z^9 a^{11}+7 z^7 a^{11}-18 z^5 a^{11}+18 z^3 a^{11}-8 z a^{11}+2 a^{11} z^{-1} -2 z^8 a^{10}+12 z^6 a^{10}-25 z^4 a^{10}+17 z^2 a^{10}-4 a^{10}-z^9 a^9+6 z^7 a^9-13 z^5 a^9+11 z^3 a^9-6 z a^9+a^9 z^{-1} -z^8 a^8+4 z^6 a^8-4 z^4 a^8-z^7 a^7+3 z^5 a^7-3 z a^7+a^7 z^{-1} -z^6 a^6+3 z^4 a^6-a^6-z^5 a^5+4 z^3 a^5-3 z a^5+a^5 z^{-1} (db)

Khovanov Homology

The coefficients of the monomials t^rq^j are shown, along with their alternating sums \chi (fixed j, alternation over r).   
\ r
  \  
j \
-9-8-7-6-5-4-3-2-10χ
-4         11
-6        110
-8       1  1
-10     121  0
-12     31   2
-14    12    1
-16   22     0
-18   1      1
-20 12       -1
-22          0
-241         -1
Integral Khovanov Homology

(db, data source)

  
\dim{\mathcal G}_{2r+i}\operatorname{KH}^r_{\mathbb Z} i=-6 i=-4 i=-2
r=-9 {\mathbb Z}
r=-8 {\mathbb Z}_2 {\mathbb Z}
r=-7 {\mathbb Z}^{2}
r=-6 {\mathbb Z}\oplus{\mathbb Z}_2^{2} {\mathbb Z}^{2}
r=-5 {\mathbb Z}^{2}\oplus{\mathbb Z}_2 {\mathbb Z}
r=-4 {\mathbb Z}^{2}\oplus{\mathbb Z}_2^{2} {\mathbb Z}^{3} {\mathbb Z}
r=-3 {\mathbb Z}\oplus{\mathbb Z}_2^{2} {\mathbb Z}^{2}
r=-2 {\mathbb Z}\oplus{\mathbb Z}_2 {\mathbb Z}
r=-1 {\mathbb Z}_2 {\mathbb Z}
r=0 {\mathbb Z} {\mathbb Z}

Computer Talk

Much of the above data can be recomputed by Mathematica using the package KnotTheory`. See A Sample KnotTheory` Session.

Modifying This Page

Read me first: Modifying Knot Pages

See/edit the Link Page master template (intermediate).

See/edit the Link_Splice_Base (expert).

Back to the top.

L11n12.gif

L11n12

L11n14.gif

L11n14