L11n126

From Knot Atlas
Jump to: navigation, search

L11n125.gif

L11n125

L11n127.gif

L11n127

Contents

L11n126.gif
(Knotscape image)
See the full Thistlethwaite Link Table (up to 11 crossings).

Visit L11n126 at Knotilus!


Link Presentations

[edit Notes on L11n126's Link Presentations]

Planar diagram presentation X8192 X10,4,11,3 X22,10,7,9 X2738 X15,5,16,4 X5,13,6,12 X11,16,12,17 X6,18,1,17 X14,20,15,19 X20,14,21,13 X18,21,19,22
Gauss code {1, -4, 2, 5, -6, -8}, {4, -1, 3, -2, -7, 6, 10, -9, -5, 7, 8, -11, 9, -10, 11, -3}
A Braid Representative
BraidPart1.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart1.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gif
BraidPart2.gifBraidPart1.gifBraidPart0.gifBraidPart1.gifBraidPart2.gifBraidPart3.gifBraidPart0.gifBraidPart0.gifBraidPart0.gif
BraidPart0.gifBraidPart2.gifBraidPart3.gifBraidPart2.gifBraidPart1.gifBraidPart4.gifBraidPart1.gifBraidPart0.gifBraidPart1.gif
BraidPart0.gifBraidPart0.gifBraidPart4.gifBraidPart0.gifBraidPart2.gifBraidPart3.gifBraidPart2.gifBraidPart3.gifBraidPart2.gif
BraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart4.gifBraidPart0.gifBraidPart4.gifBraidPart0.gif
A Morse Link Presentation L11n126 ML.gif

Polynomial invariants

Multivariable Alexander Polynomial (in u, v, w, ...) \frac{t(1) t(2)^4-t(2)^4-4 t(1) t(2)^3+3 t(2)^3-2 t(1)^2 t(2)^2+7 t(1) t(2)^2-2 t(2)^2+3 t(1)^2 t(2)-4 t(1) t(2)-t(1)^2+t(1)}{t(1) t(2)^2} (db)
Jones polynomial q^{15/2}-3 q^{13/2}+5 q^{11/2}-8 q^{9/2}+9 q^{7/2}-10 q^{5/2}+9 q^{3/2}-7 \sqrt{q}+\frac{4}{\sqrt{q}}-\frac{2}{q^{3/2}} (db)
Signature 1 (db)
HOMFLY-PT polynomial z^5 a^{-3} -3 z^3 a^{-1} +2 z^3 a^{-3} -2 z^3 a^{-5} +2 a z-4 z a^{-1} +4 z a^{-3} -2 z a^{-5} +z a^{-7} +a z^{-1} -2 a^{-1} z^{-1} +2 a^{-3} z^{-1} - a^{-5} z^{-1} (db)
Kauffman polynomial -z^9 a^{-3} -z^9 a^{-5} -3 z^8 a^{-2} -6 z^8 a^{-4} -3 z^8 a^{-6} -3 z^7 a^{-1} -5 z^7 a^{-3} -5 z^7 a^{-5} -3 z^7 a^{-7} +6 z^6 a^{-2} +15 z^6 a^{-4} +7 z^6 a^{-6} -z^6 a^{-8} -z^6+7 z^5 a^{-1} +20 z^5 a^{-3} +23 z^5 a^{-5} +10 z^5 a^{-7} -8 z^4 a^{-2} -10 z^4 a^{-4} -z^4 a^{-6} +3 z^4 a^{-8} -2 z^4-3 a z^3-15 z^3 a^{-1} -26 z^3 a^{-3} -23 z^3 a^{-5} -9 z^3 a^{-7} +3 z^2 a^{-2} +2 z^2 a^{-4} -z^2 a^{-6} -2 z^2 a^{-8} +2 z^2+4 a z+11 z a^{-1} +13 z a^{-3} +9 z a^{-5} +3 z a^{-7} - a^{-2} -a z^{-1} -2 a^{-1} z^{-1} -2 a^{-3} z^{-1} - a^{-5} z^{-1} (db)

Khovanov Homology

The coefficients of the monomials t^rq^j are shown, along with their alternating sums \chi (fixed j, alternation over r).   
\ r
  \  
j \
-2-101234567χ
16         1-1
14        2 2
12       31 -2
10      52  3
8     43   -1
6    65    1
4   45     1
2  35      -2
0 25       3
-2 2        -2
-42         2
Integral Khovanov Homology

(db, data source)

  
\dim{\mathcal G}_{2r+i}\operatorname{KH}^r_{\mathbb Z} i=0 i=2
r=-2 {\mathbb Z}^{2}
r=-1 {\mathbb Z}^{2}\oplus{\mathbb Z}_2^{2} {\mathbb Z}^{2}
r=0 {\mathbb Z}^{5}\oplus{\mathbb Z}_2^{2} {\mathbb Z}^{3}
r=1 {\mathbb Z}^{5}\oplus{\mathbb Z}_2^{4} {\mathbb Z}^{4}
r=2 {\mathbb Z}^{5}\oplus{\mathbb Z}_2^{5} {\mathbb Z}^{6}
r=3 {\mathbb Z}^{5}\oplus{\mathbb Z}_2^{4} {\mathbb Z}^{4}
r=4 {\mathbb Z}^{3}\oplus{\mathbb Z}_2^{5} {\mathbb Z}^{5}
r=5 {\mathbb Z}^{2}\oplus{\mathbb Z}_2^{3} {\mathbb Z}^{3}
r=6 {\mathbb Z}\oplus{\mathbb Z}_2^{2} {\mathbb Z}^{2}
r=7 {\mathbb Z}_2 {\mathbb Z}

Computer Talk

Much of the above data can be recomputed by Mathematica using the package KnotTheory`. See A Sample KnotTheory` Session.

Modifying This Page

Read me first: Modifying Knot Pages

See/edit the Link Page master template (intermediate).

See/edit the Link_Splice_Base (expert).

Back to the top.

L11n125.gif

L11n125

L11n127.gif

L11n127