L11n127

From Knot Atlas
Jump to: navigation, search

L11n126.gif

L11n126

L11n128.gif

L11n128

Contents

L11n127.gif
(Knotscape image)
See the full Thistlethwaite Link Table (up to 11 crossings).

Visit L11n127 at Knotilus!


Link Presentations

[edit Notes on L11n127's Link Presentations]

Planar diagram presentation X8192 X10,4,11,3 X22,10,7,9 X2738 X4,15,5,16 X5,13,6,12 X11,16,12,17 X17,6,18,1 X14,20,15,19 X20,14,21,13 X18,21,19,22
Gauss code {1, -4, 2, -5, -6, 8}, {4, -1, 3, -2, -7, 6, 10, -9, 5, 7, -8, -11, 9, -10, 11, -3}
A Braid Representative
BraidPart1.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart1.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gif
BraidPart2.gifBraidPart3.gifBraidPart0.gifBraidPart1.gifBraidPart2.gifBraidPart3.gifBraidPart0.gifBraidPart0.gifBraidPart0.gif
BraidPart0.gifBraidPart4.gifBraidPart3.gifBraidPart2.gifBraidPart3.gifBraidPart4.gifBraidPart1.gifBraidPart0.gifBraidPart1.gif
BraidPart0.gifBraidPart0.gifBraidPart4.gifBraidPart0.gifBraidPart4.gifBraidPart3.gifBraidPart2.gifBraidPart3.gifBraidPart2.gif
BraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart4.gifBraidPart0.gifBraidPart4.gifBraidPart0.gif
A Morse Link Presentation L11n127 ML.gif

Polynomial invariants

Multivariable Alexander Polynomial (in u, v, w, ...) \frac{u^2 v^2-2 u^2 v+u^2-u v^2+u v-u+v^2-2 v+1}{u v} (db)
Jones polynomial -q^{5/2}+2 q^{3/2}-3 \sqrt{q}+\frac{3}{\sqrt{q}}-\frac{4}{q^{3/2}}+\frac{3}{q^{5/2}}-\frac{3}{q^{7/2}}+\frac{2}{q^{9/2}}-\frac{1}{q^{11/2}} (db)
Signature 1 (db)
HOMFLY-PT polynomial a^5 z+a^5 z^{-1} -2 a^3 z^3-5 a^3 z-2 a^3 z^{-1} +a z^5+4 a z^3-z^3 a^{-1} +5 a z+2 a z^{-1} -2 z a^{-1} - a^{-1} z^{-1} (db)
Kauffman polynomial -a^3 z^9-a z^9-2 a^4 z^8-4 a^2 z^8-2 z^8-a^5 z^7+2 a^3 z^7+2 a z^7-z^7 a^{-1} +10 a^4 z^6+20 a^2 z^6+10 z^6+5 a^5 z^5+9 a^3 z^5+9 a z^5+5 z^5 a^{-1} -13 a^4 z^4-26 a^2 z^4-13 z^4-7 a^5 z^3-20 a^3 z^3-20 a z^3-7 z^3 a^{-1} +5 a^4 z^2+10 a^2 z^2+5 z^2+4 a^5 z+12 a^3 z+12 a z+4 z a^{-1} -a^2-a^5 z^{-1} -2 a^3 z^{-1} -2 a z^{-1} - a^{-1} z^{-1} (db)

Khovanov Homology

The coefficients of the monomials t^rq^j are shown, along with their alternating sums \chi (fixed j, alternation over r).   
\ r
  \  
j \
-6-5-4-3-2-1012χ
6        11
4       1 -1
2      21 1
0     22  0
-2    221  1
-4   23    1
-6  121    0
-8 12      1
-10 1       -1
-121        1
Integral Khovanov Homology

(db, data source)

  
\dim{\mathcal G}_{2r+i}\operatorname{KH}^r_{\mathbb Z} i=-2 i=0 i=2
r=-6 {\mathbb Z}
r=-5 {\mathbb Z}\oplus{\mathbb Z}_2 {\mathbb Z}
r=-4 {\mathbb Z}^{2}\oplus{\mathbb Z}_2 {\mathbb Z}
r=-3 {\mathbb Z}^{2}\oplus{\mathbb Z}_2^{2} {\mathbb Z}^{2}
r=-2 {\mathbb Z} {\mathbb Z}^{3}\oplus{\mathbb Z}_2^{2} {\mathbb Z}^{2}
r=-1 {\mathbb Z}^{2}\oplus{\mathbb Z}_2^{2} {\mathbb Z}^{2}
r=0 {\mathbb Z} {\mathbb Z}^{2}\oplus{\mathbb Z}_2^{2} {\mathbb Z}^{2}
r=1 {\mathbb Z}\oplus{\mathbb Z}_2 {\mathbb Z}
r=2 {\mathbb Z}_2 {\mathbb Z}

Computer Talk

Much of the above data can be recomputed by Mathematica using the package KnotTheory`. See A Sample KnotTheory` Session.

Modifying This Page

Read me first: Modifying Knot Pages

See/edit the Link Page master template (intermediate).

See/edit the Link_Splice_Base (expert).

Back to the top.

L11n126.gif

L11n126

L11n128.gif

L11n128