L11n172

From Knot Atlas
Jump to: navigation, search

L11n171.gif

L11n171

L11n173.gif

L11n173

Contents

L11n172.gif
(Knotscape image)
See the full Thistlethwaite Link Table (up to 11 crossings).

Visit L11n172 at Knotilus!


Link Presentations

[edit Notes on L11n172's Link Presentations]

Planar diagram presentation X8192 X3,10,4,11 X12,7,13,8 X22,15,7,16 X14,6,15,5 X6,14,1,13 X16,21,17,22 X9,18,10,19 X20,11,21,12 X4,18,5,17 X19,3,20,2
Gauss code {1, 11, -2, -10, 5, -6}, {3, -1, -8, 2, 9, -3, 6, -5, 4, -7, 10, 8, -11, -9, 7, -4}
A Braid Representative
BraidPart1.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart3.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gif
BraidPart2.gifBraidPart1.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart1.gifBraidPart4.gifBraidPart3.gifBraidPart0.gifBraidPart3.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart1.gif
BraidPart0.gifBraidPart2.gifBraidPart3.gifBraidPart0.gifBraidPart3.gifBraidPart2.gifBraidPart3.gifBraidPart4.gifBraidPart1.gifBraidPart4.gifBraidPart3.gifBraidPart0.gifBraidPart3.gifBraidPart2.gif
BraidPart0.gifBraidPart0.gifBraidPart4.gifBraidPart1.gifBraidPart4.gifBraidPart0.gifBraidPart4.gifBraidPart0.gifBraidPart2.gifBraidPart0.gifBraidPart4.gifBraidPart3.gifBraidPart4.gifBraidPart0.gif
BraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart2.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart4.gifBraidPart0.gifBraidPart0.gif
A Morse Link Presentation L11n172 ML.gif

Polynomial invariants

Multivariable Alexander Polynomial (in u, v, w, ...) -\frac{u^2 v^2-3 u^2 v+2 u^2-5 u v^2+9 u v-5 u+2 v^2-3 v+1}{u v} (db)
Jones polynomial -\frac{8}{q^{9/2}}+\frac{10}{q^{7/2}}-\frac{11}{q^{5/2}}-2 q^{3/2}+\frac{9}{q^{3/2}}+\frac{1}{q^{15/2}}-\frac{3}{q^{13/2}}+\frac{6}{q^{11/2}}+4 \sqrt{q}-\frac{8}{\sqrt{q}} (db)
Signature -1 (db)
HOMFLY-PT polynomial -z a^7+2 z^3 a^5+z a^5-a^5 z^{-1} -z^5 a^3-z^3 a^3+2 a^3 z^{-1} +3 z^3 a+3 z a-2 z a^{-1} - a^{-1} z^{-1} (db)
Kauffman polynomial a^8 z^6-3 a^8 z^4+2 a^8 z^2+3 a^7 z^7-9 a^7 z^5+6 a^7 z^3-a^7 z+4 a^6 z^8-12 a^6 z^6+10 a^6 z^4-6 a^6 z^2+2 a^6+2 a^5 z^9-a^5 z^7-8 a^5 z^5+5 a^5 z^3-a^5 z^{-1} +8 a^4 z^8-25 a^4 z^6+29 a^4 z^4-18 a^4 z^2+5 a^4+2 a^3 z^9-a^3 z^7-4 a^3 z^5+4 a^3 z^3+2 a^3 z-2 a^3 z^{-1} +4 a^2 z^8-11 a^2 z^6+18 a^2 z^4-11 a^2 z^2+3 a^2+3 a z^7-5 a z^5+8 a z^3+3 z^3 a^{-1} -3 a z-4 z a^{-1} + a^{-1} z^{-1} +z^6+2 z^4-z^2-1 (db)

Khovanov Homology

The coefficients of the monomials t^rq^j are shown, along with their alternating sums \chi (fixed j, alternation over r).   
\ r
  \  
j \
-7-6-5-4-3-2-1012χ
4         22
2        31-2
0       51 4
-2      54  -1
-4     64   2
-6    45    1
-8   46     -2
-10  24      2
-12 14       -3
-14 2        2
-161         -1
Integral Khovanov Homology

(db, data source)

  
\dim{\mathcal G}_{2r+i}\operatorname{KH}^r_{\mathbb Z} i=-2 i=0
r=-7 {\mathbb Z}
r=-6 {\mathbb Z}^{2}\oplus{\mathbb Z}_2 {\mathbb Z}
r=-5 {\mathbb Z}^{4}\oplus{\mathbb Z}_2^{2} {\mathbb Z}^{2}
r=-4 {\mathbb Z}^{4}\oplus{\mathbb Z}_2^{4} {\mathbb Z}^{4}
r=-3 {\mathbb Z}^{6}\oplus{\mathbb Z}_2^{4} {\mathbb Z}^{4}
r=-2 {\mathbb Z}^{5}\oplus{\mathbb Z}_2^{6} {\mathbb Z}^{6}
r=-1 {\mathbb Z}^{4}\oplus{\mathbb Z}_2^{5} {\mathbb Z}^{5}
r=0 {\mathbb Z}^{4}\oplus{\mathbb Z}_2^{4} {\mathbb Z}^{5}
r=1 {\mathbb Z}\oplus{\mathbb Z}_2^{3} {\mathbb Z}^{3}
r=2 {\mathbb Z}\oplus{\mathbb Z}_2 {\mathbb Z}^{2}

Computer Talk

Much of the above data can be recomputed by Mathematica using the package KnotTheory`. See A Sample KnotTheory` Session.

Modifying This Page

Read me first: Modifying Knot Pages

See/edit the Link Page master template (intermediate).

See/edit the Link_Splice_Base (expert).

Back to the top.

L11n171.gif

L11n171

L11n173.gif

L11n173