L11n187

From Knot Atlas
Jump to: navigation, search

L11n186.gif

L11n186

L11n188.gif

L11n188

Contents

L11n187.gif
(Knotscape image)
See the full Thistlethwaite Link Table (up to 11 crossings).

Visit L11n187 at Knotilus!


Link Presentations

[edit Notes on L11n187's Link Presentations]

Planar diagram presentation X8192 X12,4,13,3 X22,12,7,11 X15,20,16,21 X18,10,19,9 X10,20,11,19 X21,14,22,15 X16,6,17,5 X2738 X4,14,5,13 X6,18,1,17
Gauss code {1, -9, 2, -10, 8, -11}, {9, -1, 5, -6, 3, -2, 10, 7, -4, -8, 11, -5, 6, 4, -7, -3}
A Braid Representative
BraidPart1.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart3.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gif
BraidPart2.gifBraidPart1.gifBraidPart1.gifBraidPart0.gifBraidPart1.gifBraidPart1.gifBraidPart0.gifBraidPart3.gifBraidPart4.gifBraidPart3.gifBraidPart0.gifBraidPart1.gifBraidPart0.gifBraidPart1.gifBraidPart1.gif
BraidPart0.gifBraidPart2.gifBraidPart2.gifBraidPart3.gifBraidPart2.gifBraidPart2.gifBraidPart3.gifBraidPart4.gifBraidPart0.gifBraidPart4.gifBraidPart1.gifBraidPart2.gifBraidPart3.gifBraidPart2.gifBraidPart2.gif
BraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart4.gifBraidPart3.gifBraidPart0.gifBraidPart4.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart2.gifBraidPart1.gifBraidPart4.gifBraidPart0.gifBraidPart0.gif
BraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart4.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart2.gifBraidPart0.gifBraidPart0.gifBraidPart0.gif
A Morse Link Presentation L11n187 ML.gif

Polynomial invariants

Multivariable Alexander Polynomial (in u, v, w, ...) -\frac{t(1) t(2)^4-t(2)^4+2 t(1)^2 t(2)^3-4 t(1) t(2)^3+2 t(2)^3-3 t(1)^2 t(2)^2+5 t(1) t(2)^2-3 t(2)^2+2 t(1)^2 t(2)-4 t(1) t(2)+2 t(2)-t(1)^2+t(1)}{t(1) t(2)^2} (db)
Jones polynomial 10 q^{9/2}-11 q^{7/2}+9 q^{5/2}-7 q^{3/2}+q^{17/2}-3 q^{15/2}+6 q^{13/2}-9 q^{11/2}+4 \sqrt{q}-\frac{2}{\sqrt{q}} (db)
Signature 3 (db)
HOMFLY-PT polynomial -2 z^5 a^{-3} -z^5 a^{-5} +2 z^3 a^{-1} -6 z^3 a^{-3} -z^3 a^{-5} +z^3 a^{-7} +4 z a^{-1} -5 z a^{-3} +z a^{-5} +z a^{-7} + a^{-1} z^{-1} - a^{-3} z^{-1} (db)
Kauffman polynomial -z^9 a^{-3} -z^9 a^{-5} -z^8 a^{-2} -5 z^8 a^{-4} -4 z^8 a^{-6} -6 z^7 a^{-5} -6 z^7 a^{-7} +10 z^6 a^{-4} +5 z^6 a^{-6} -5 z^6 a^{-8} -3 z^5 a^{-1} +17 z^5 a^{-5} +11 z^5 a^{-7} -3 z^5 a^{-9} +4 z^4 a^{-2} -6 z^4 a^{-4} -3 z^4 a^{-6} +6 z^4 a^{-8} -z^4 a^{-10} +8 z^3 a^{-1} +7 z^3 a^{-3} -15 z^3 a^{-5} -11 z^3 a^{-7} +3 z^3 a^{-9} -z^2 a^{-2} +2 z^2 a^{-4} -2 z^2 a^{-8} +z^2 a^{-10} -5 z a^{-1} -5 z a^{-3} +4 z a^{-5} +4 z a^{-7} - a^{-2} + a^{-1} z^{-1} + a^{-3} z^{-1} (db)

Khovanov Homology

The coefficients of the monomials t^rq^j are shown, along with their alternating sums \chi (fixed j, alternation over r).   
\ r
  \  
j \
-2-101234567χ
18         1-1
16        2 2
14       41 -3
12      52  3
10     54   -1
8    65    1
6   46     2
4  35      -2
2 25       3
0 2        -2
-22         2
Integral Khovanov Homology

(db, data source)

  
\dim{\mathcal G}_{2r+i}\operatorname{KH}^r_{\mathbb Z} i=2 i=4
r=-2 {\mathbb Z}^{2}
r=-1 {\mathbb Z}^{2}\oplus{\mathbb Z}_2^{2} {\mathbb Z}^{2}
r=0 {\mathbb Z}^{5}\oplus{\mathbb Z}_2^{2} {\mathbb Z}^{3}
r=1 {\mathbb Z}^{5}\oplus{\mathbb Z}_2^{4} {\mathbb Z}^{4}
r=2 {\mathbb Z}^{6}\oplus{\mathbb Z}_2^{5} {\mathbb Z}^{6}
r=3 {\mathbb Z}^{5}\oplus{\mathbb Z}_2^{5} {\mathbb Z}^{5}
r=4 {\mathbb Z}^{4}\oplus{\mathbb Z}_2^{5} {\mathbb Z}^{5}
r=5 {\mathbb Z}^{2}\oplus{\mathbb Z}_2^{4} {\mathbb Z}^{4}
r=6 {\mathbb Z}\oplus{\mathbb Z}_2^{2} {\mathbb Z}^{2}
r=7 {\mathbb Z}_2 {\mathbb Z}

Computer Talk

Much of the above data can be recomputed by Mathematica using the package KnotTheory`. See A Sample KnotTheory` Session.

Modifying This Page

Read me first: Modifying Knot Pages

See/edit the Link Page master template (intermediate).

See/edit the Link_Splice_Base (expert).

Back to the top.

L11n186.gif

L11n186

L11n188.gif

L11n188