L11n188

From Knot Atlas
Jump to: navigation, search

L11n187.gif

L11n187

L11n189.gif

L11n189

Contents

L11n188.gif
(Knotscape image)
See the full Thistlethwaite Link Table (up to 11 crossings).

Visit L11n188 at Knotilus!


Link Presentations

[edit Notes on L11n188's Link Presentations]

Planar diagram presentation X8192 X12,3,13,4 X16,6,17,5 X22,13,7,14 X18,15,19,16 X14,21,15,22 X9,20,10,21 X4,18,5,17 X19,10,20,11 X2738 X6,11,1,12
Gauss code {1, -10, 2, -8, 3, -11}, {10, -1, -7, 9, 11, -2, 4, -6, 5, -3, 8, -5, -9, 7, 6, -4}
A Braid Representative
BraidPart1.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart3.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gif
BraidPart2.gifBraidPart1.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart3.gifBraidPart4.gifBraidPart3.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart3.gifBraidPart0.gifBraidPart0.gif
BraidPart0.gifBraidPart2.gifBraidPart3.gifBraidPart0.gifBraidPart3.gifBraidPart0.gifBraidPart3.gifBraidPart4.gifBraidPart3.gifBraidPart4.gifBraidPart3.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart3.gifBraidPart4.gifBraidPart3.gifBraidPart0.gif
BraidPart0.gifBraidPart0.gifBraidPart4.gifBraidPart3.gifBraidPart4.gifBraidPart1.gifBraidPart4.gifBraidPart0.gifBraidPart4.gifBraidPart3.gifBraidPart4.gifBraidPart1.gifBraidPart0.gifBraidPart1.gifBraidPart4.gifBraidPart1.gifBraidPart4.gifBraidPart0.gif
BraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart4.gifBraidPart3.gifBraidPart2.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart4.gifBraidPart1.gifBraidPart2.gifBraidPart1.gifBraidPart2.gifBraidPart0.gifBraidPart2.gifBraidPart3.gifBraidPart0.gif
BraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart4.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart2.gifBraidPart1.gifBraidPart2.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart4.gifBraidPart3.gif
BraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart2.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart4.gif
A Morse Link Presentation L11n188 ML.gif

Polynomial invariants

Multivariable Alexander Polynomial (in u, v, w, ...) \frac{t(1) t(2)^4-t(2)^4+2 t(1)^2 t(2)^3-5 t(1) t(2)^3+2 t(2)^3-3 t(1)^2 t(2)^2+7 t(1) t(2)^2-3 t(2)^2+2 t(1)^2 t(2)-5 t(1) t(2)+2 t(2)-t(1)^2+t(1)}{t(1) t(2)^2} (db)
Jones polynomial -\sqrt{q}+\frac{3}{\sqrt{q}}-\frac{7}{q^{3/2}}+\frac{9}{q^{5/2}}-\frac{12}{q^{7/2}}+\frac{12}{q^{9/2}}-\frac{11}{q^{11/2}}+\frac{8}{q^{13/2}}-\frac{5}{q^{15/2}}+\frac{2}{q^{17/2}} (db)
Signature -3 (db)
HOMFLY-PT polynomial -2 a^7 z^3-3 a^7 z-a^7 z^{-1} +2 a^5 z^5+6 a^5 z^3+7 a^5 z+3 a^5 z^{-1} +a^3 z^5-4 a^3 z-2 a^3 z^{-1} -a z^3-a z (db)
Kauffman polynomial 3 a^{10} z^4-4 a^{10} z^2+a^9 z^7+3 a^9 z^5-6 a^9 z^3+a^9 z+2 a^8 z^8-2 a^8 z^4+2 a^8 z^2-a^8+a^7 z^9+5 a^7 z^7-12 a^7 z^5+12 a^7 z^3-5 a^7 z+a^7 z^{-1} +6 a^6 z^8-7 a^6 z^6-3 a^6 z^4+10 a^6 z^2-3 a^6+a^5 z^9+9 a^5 z^7-26 a^5 z^5+28 a^5 z^3-14 a^5 z+3 a^5 z^{-1} +4 a^4 z^8-4 a^4 z^6-3 a^4 z^4+5 a^4 z^2-3 a^4+5 a^3 z^7-10 a^3 z^5+8 a^3 z^3-7 a^3 z+2 a^3 z^{-1} +3 a^2 z^6-5 a^2 z^4+a^2 z^2+a z^5-2 a z^3+a z (db)

Khovanov Homology

The coefficients of the monomials t^rq^j are shown, along with their alternating sums \chi (fixed j, alternation over r).   
\ r
  \  
j \
-7-6-5-4-3-2-1012χ
2         11
0        2 -2
-2       51 4
-4      53  -2
-6     74   3
-8    66    0
-10   56     -1
-12  36      3
-14 25       -3
-16 3        3
-182         -2
Integral Khovanov Homology

(db, data source)

  
\dim{\mathcal G}_{2r+i}\operatorname{KH}^r_{\mathbb Z} i=-4 i=-2
r=-7 {\mathbb Z}^{2}
r=-6 {\mathbb Z}^{3}\oplus{\mathbb Z}_2^{2} {\mathbb Z}^{2}
r=-5 {\mathbb Z}^{5}\oplus{\mathbb Z}_2^{3} {\mathbb Z}^{3}
r=-4 {\mathbb Z}^{6}\oplus{\mathbb Z}_2^{5} {\mathbb Z}^{5}
r=-3 {\mathbb Z}^{6}\oplus{\mathbb Z}_2^{6} {\mathbb Z}^{6}
r=-2 {\mathbb Z}^{6}\oplus{\mathbb Z}_2^{6} {\mathbb Z}^{7}
r=-1 {\mathbb Z}^{4}\oplus{\mathbb Z}_2^{5} {\mathbb Z}^{5}
r=0 {\mathbb Z}^{3}\oplus{\mathbb Z}_2^{4} {\mathbb Z}^{5}
r=1 {\mathbb Z}\oplus{\mathbb Z}_2^{2} {\mathbb Z}^{2}
r=2 {\mathbb Z}_2 {\mathbb Z}

Computer Talk

Much of the above data can be recomputed by Mathematica using the package KnotTheory`. See A Sample KnotTheory` Session.

Modifying This Page

Read me first: Modifying Knot Pages

See/edit the Link Page master template (intermediate).

See/edit the Link_Splice_Base (expert).

Back to the top.

L11n187.gif

L11n187

L11n189.gif

L11n189