L11n203

From Knot Atlas
Jump to: navigation, search

L11n202.gif

L11n202

L11n204.gif

L11n204

Contents

L11n203.gif
(Knotscape image)
See the full Thistlethwaite Link Table (up to 11 crossings).

Visit L11n203 at Knotilus!


Link Presentations

[edit Notes on L11n203's Link Presentations]

Planar diagram presentation X10,1,11,2 X16,8,17,7 X18,12,19,11 X19,3,20,2 X3,12,4,13 X13,21,14,20 X5,15,6,14 X6,9,7,10 X22,16,9,15 X8,18,1,17 X21,4,22,5
Gauss code {1, 4, -5, 11, -7, -8, 2, -10}, {8, -1, 3, 5, -6, 7, 9, -2, 10, -3, -4, 6, -11, -9}
A Braid Representative
BraidPart3.gifBraidPart0.gifBraidPart1.gifBraidPart0.gifBraidPart1.gifBraidPart1.gifBraidPart0.gifBraidPart1.gifBraidPart0.gifBraidPart3.gifBraidPart0.gif
BraidPart4.gifBraidPart1.gifBraidPart2.gifBraidPart3.gifBraidPart2.gifBraidPart2.gifBraidPart3.gifBraidPart2.gifBraidPart1.gifBraidPart4.gifBraidPart1.gif
BraidPart0.gifBraidPart2.gifBraidPart0.gifBraidPart4.gifBraidPart0.gifBraidPart0.gifBraidPart4.gifBraidPart0.gifBraidPart2.gifBraidPart0.gifBraidPart2.gif
A Morse Link Presentation L11n203 ML.gif

Polynomial invariants

Multivariable Alexander Polynomial (in u, v, w, ...) -\frac{(t(1)-1) (t(2)-1) \left(t(1)^2 t(2)^2+3 t(1) t(2)+1\right)}{t(1)^{3/2} t(2)^{3/2}} (db)
Jones polynomial q^{15/2}-2 q^{13/2}+4 q^{11/2}-6 q^{9/2}+6 q^{7/2}-7 q^{5/2}+6 q^{3/2}-5 \sqrt{q}+\frac{2}{\sqrt{q}}-\frac{1}{q^{3/2}} (db)
Signature 1 (db)
HOMFLY-PT polynomial z^5 a^{-5} +4 z^3 a^{-5} +5 z a^{-5} + a^{-5} z^{-1} -z^7 a^{-3} -6 z^5 a^{-3} -13 z^3 a^{-3} -11 z a^{-3} -3 a^{-3} z^{-1} +z^5 a^{-1} +4 z^3 a^{-1} +6 z a^{-1} +2 a^{-1} z^{-1} (db)
Kauffman polynomial z^6 a^{-8} -4 z^4 a^{-8} +4 z^2 a^{-8} +2 z^7 a^{-7} -7 z^5 a^{-7} +6 z^3 a^{-7} -z a^{-7} +2 z^8 a^{-6} -6 z^6 a^{-6} +5 z^4 a^{-6} -4 z^2 a^{-6} + a^{-6} +z^9 a^{-5} -2 z^7 a^{-5} +4 z^5 a^{-5} -11 z^3 a^{-5} +6 z a^{-5} - a^{-5} z^{-1} +3 z^8 a^{-4} -9 z^6 a^{-4} +13 z^4 a^{-4} -12 z^2 a^{-4} +3 a^{-4} +z^9 a^{-3} -4 z^7 a^{-3} +15 z^5 a^{-3} -24 z^3 a^{-3} +15 z a^{-3} -3 a^{-3} z^{-1} +z^8 a^{-2} -2 z^6 a^{-2} +6 z^4 a^{-2} -5 z^2 a^{-2} +3 a^{-2} +4 z^5 a^{-1} +a z^3-6 z^3 a^{-1} -a z+7 z a^{-1} -2 a^{-1} z^{-1} +2 z^4-z^2 (db)

Khovanov Homology

The coefficients of the monomials t^rq^j are shown, along with their alternating sums \chi (fixed j, alternation over r).   
\ r
  \  
j \
-2-101234567χ
16         1-1
14        1 1
12       31 -2
10      31  2
8     33   0
6    43    1
4   23     1
2  34      -1
0 14       3
-2 1        -1
-41         1
Integral Khovanov Homology

(db, data source)

  
\dim{\mathcal G}_{2r+i}\operatorname{KH}^r_{\mathbb Z} i=0 i=2
r=-2 {\mathbb Z}
r=-1 {\mathbb Z}\oplus{\mathbb Z}_2 {\mathbb Z}
r=0 {\mathbb Z}^{4}\oplus{\mathbb Z}_2 {\mathbb Z}^{3}
r=1 {\mathbb Z}^{4}\oplus{\mathbb Z}_2^{2} {\mathbb Z}^{2}
r=2 {\mathbb Z}^{3}\oplus{\mathbb Z}_2^{4} {\mathbb Z}^{4}
r=3 {\mathbb Z}^{3}\oplus{\mathbb Z}_2^{3} {\mathbb Z}^{3}
r=4 {\mathbb Z}^{3}\oplus{\mathbb Z}_2^{3} {\mathbb Z}^{3}
r=5 {\mathbb Z}\oplus{\mathbb Z}_2^{3} {\mathbb Z}^{3}
r=6 {\mathbb Z}\oplus{\mathbb Z}_2 {\mathbb Z}
r=7 {\mathbb Z}_2 {\mathbb Z}

Computer Talk

Much of the above data can be recomputed by Mathematica using the package KnotTheory`. See A Sample KnotTheory` Session.

Modifying This Page

Read me first: Modifying Knot Pages

See/edit the Link Page master template (intermediate).

See/edit the Link_Splice_Base (expert).

Back to the top.

L11n202.gif

L11n202

L11n204.gif

L11n204