L11n204

From Knot Atlas
Jump to: navigation, search

L11n203.gif

L11n203

L11n205.gif

L11n205

Contents

L11n204.gif
(Knotscape image)
See the full Thistlethwaite Link Table (up to 11 crossings).

Visit L11n204 at Knotilus!


Link Presentations

[edit Notes on L11n204's Link Presentations]

Planar diagram presentation X10,1,11,2 X7,16,8,17 X11,18,12,19 X2,19,3,20 X3,12,4,13 X20,13,21,14 X14,5,15,6 X6,9,7,10 X15,22,16,9 X17,8,18,1 X21,4,22,5
Gauss code {1, -4, -5, 11, 7, -8, -2, 10}, {8, -1, -3, 5, 6, -7, -9, 2, -10, 3, 4, -6, -11, 9}
A Braid Representative
BraidPart3.gifBraidPart0.gifBraidPart3.gifBraidPart0.gifBraidPart3.gifBraidPart3.gifBraidPart0.gifBraidPart3.gifBraidPart0.gifBraidPart3.gifBraidPart0.gif
BraidPart4.gifBraidPart3.gifBraidPart4.gifBraidPart3.gifBraidPart4.gifBraidPart4.gifBraidPart3.gifBraidPart4.gifBraidPart3.gifBraidPart4.gifBraidPart3.gif
BraidPart0.gifBraidPart4.gifBraidPart0.gifBraidPart4.gifBraidPart0.gifBraidPart0.gifBraidPart4.gifBraidPart0.gifBraidPart4.gifBraidPart0.gifBraidPart4.gif
A Morse Link Presentation L11n204 ML.gif

Polynomial invariants

Multivariable Alexander Polynomial (in u, v, w, ...) -\frac{\left(t(1) t(2)^2+1\right) \left(t(1)^2 t(2)^3+1\right)}{t(1)^{3/2} t(2)^{5/2}} (db)
Jones polynomial -\frac{1}{q^{9/2}}-\frac{1}{q^{13/2}}+\frac{1}{q^{21/2}}-\frac{1}{q^{23/2}} (db)
Signature -8 (db)
HOMFLY-PT polynomial a^{13} \left(-z^3\right)-3 a^{13} z-a^{13} z^{-1} +a^{11} z^7+8 a^{11} z^5+20 a^{11} z^3+17 a^{11} z+3 a^{11} z^{-1} -a^9 z^9-9 a^9 z^7-28 a^9 z^5-36 a^9 z^3-18 a^9 z-2 a^9 z^{-1} (db)
Kauffman polynomial -z a^{15}-a^{14}+z^3 a^{13}-3 z a^{13}+a^{13} z^{-1} -z^8 a^{12}+8 z^6 a^{12}-20 z^4 a^{12}+17 z^2 a^{12}-3 a^{12}-z^9 a^{11}+9 z^7 a^{11}-28 z^5 a^{11}+37 z^3 a^{11}-20 z a^{11}+3 a^{11} z^{-1} -z^8 a^{10}+8 z^6 a^{10}-20 z^4 a^{10}+17 z^2 a^{10}-3 a^{10}-z^9 a^9+9 z^7 a^9-28 z^5 a^9+36 z^3 a^9-18 z a^9+2 a^9 z^{-1} (db)

Khovanov Homology

The coefficients of the monomials t^rq^j are shown, along with their alternating sums \chi (fixed j, alternation over r).   
\ r
  \  
j \
-8-7-6-5-4-3-2-10χ
-8        11
-10        11
-12      1  1
-14    1    1
-16    11   0
-18  11     0
-20   1     -1
-2211       0
-241        1
Integral Khovanov Homology

(db, data source)

  
\dim{\mathcal G}_{2r+i}\operatorname{KH}^r_{\mathbb Z} i=-10 i=-8 i=-6
r=-8 {\mathbb Z} {\mathbb Z}
r=-7 {\mathbb Z}
r=-6 {\mathbb Z}_2 {\mathbb Z}
r=-5 {\mathbb Z} {\mathbb Z}
r=-4 {\mathbb Z} {\mathbb Z}
r=-3 {\mathbb Z}
r=-2 {\mathbb Z}_2 {\mathbb Z}
r=-1
r=0 {\mathbb Z} {\mathbb Z}

Computer Talk

Much of the above data can be recomputed by Mathematica using the package KnotTheory`. See A Sample KnotTheory` Session.

Modifying This Page

Read me first: Modifying Knot Pages

See/edit the Link Page master template (intermediate).

See/edit the Link_Splice_Base (expert).

Back to the top.

L11n203.gif

L11n203

L11n205.gif

L11n205