From Knot Atlas
Jump to: navigation, search






(Knotscape image)
See the full Thistlethwaite Link Table (up to 11 crossings).

Visit L11n212 at Knotilus!

Link Presentations

[edit Notes on L11n212's Link Presentations]

Planar diagram presentation X10,1,11,2 X13,21,14,20 X3,12,4,13 X2,19,3,20 X14,5,15,6 X16,7,17,8 X8,9,1,10 X18,12,19,11 X6,15,7,16 X22,18,9,17 X21,4,22,5
Gauss code {1, -4, -3, 11, 5, -9, 6, -7}, {7, -1, 8, 3, -2, -5, 9, -6, 10, -8, 4, 2, -11, -10}
A Braid Representative
A Morse Link Presentation L11n212 ML.gif

Polynomial invariants

Multivariable Alexander Polynomial (in u, v, w, ...) -\frac{(u v+1) \left(u^2 v+u v^4-2 u v^3+2 u v^2-2 u v+u+v^3\right)}{u^{3/2} v^{5/2}} (db)
Jones polynomial \frac{1}{\sqrt{q}}-\frac{3}{q^{3/2}}+\frac{4}{q^{5/2}}-\frac{6}{q^{7/2}}+\frac{7}{q^{9/2}}-\frac{7}{q^{11/2}}+\frac{5}{q^{13/2}}-\frac{4}{q^{15/2}}+\frac{2}{q^{17/2}}-\frac{1}{q^{19/2}} (db)
Signature -3 (db)
HOMFLY-PT polynomial a^7 z^5+4 a^7 z^3+5 a^7 z+2 a^7 z^{-1} -a^5 z^7-6 a^5 z^5-13 a^5 z^3-11 a^5 z-3 a^5 z^{-1} +a^3 z^5+3 a^3 z^3+2 a^3 z+a^3 z^{-1} (db)
Kauffman polynomial a^{11} z^5-3 a^{11} z^3+a^{11} z+2 a^{10} z^6-5 a^{10} z^4+a^{10} z^2+3 a^9 z^7-10 a^9 z^5+11 a^9 z^3-5 a^9 z+2 a^8 z^8-5 a^8 z^6+4 a^8 z^4+a^7 z^9-2 a^7 z^7+3 a^7 z^5-3 a^7 z^3+6 a^7 z-2 a^7 z^{-1} +3 a^6 z^8-11 a^6 z^6+20 a^6 z^4-12 a^6 z^2+3 a^6+a^5 z^9-5 a^5 z^7+17 a^5 z^5-23 a^5 z^3+14 a^5 z-3 a^5 z^{-1} +a^4 z^8-4 a^4 z^6+12 a^4 z^4-13 a^4 z^2+3 a^4+3 a^3 z^5-6 a^3 z^3+2 a^3 z-a^3 z^{-1} +a^2 z^4-2 a^2 z^2+a^2 (db)

Khovanov Homology

The coefficients of the monomials t^rq^j are shown, along with their alternating sums \chi (fixed j, alternation over r).   
\ r
j \
0         1-1
-2        2 2
-4       32 -1
-6      31  2
-8     43   -1
-10    33    0
-12   24     2
-14  23      -1
-16  2       2
-1812        -1
-201         1
Integral Khovanov Homology

(db, data source)

\dim{\mathcal G}_{2r+i}\operatorname{KH}^r_{\mathbb Z} i=-4 i=-2
r=-8 {\mathbb Z} {\mathbb Z}
r=-7 {\mathbb Z}^{2}
r=-6 {\mathbb Z}^{2}\oplus{\mathbb Z}_2^{2} {\mathbb Z}^{2}
r=-5 {\mathbb Z}^{3}\oplus{\mathbb Z}_2^{2} {\mathbb Z}^{2}
r=-4 {\mathbb Z}^{4}\oplus{\mathbb Z}_2^{3} {\mathbb Z}^{3}
r=-3 {\mathbb Z}^{3}\oplus{\mathbb Z}_2^{4} {\mathbb Z}^{4}
r=-2 {\mathbb Z}^{3}\oplus{\mathbb Z}_2^{3} {\mathbb Z}^{3}
r=-1 {\mathbb Z}\oplus{\mathbb Z}_2^{3} {\mathbb Z}^{3}
r=0 {\mathbb Z}^{2}\oplus{\mathbb Z}_2 {\mathbb Z}^{2}
r=1 {\mathbb Z}_2 {\mathbb Z}

Computer Talk

Much of the above data can be recomputed by Mathematica using the package KnotTheory`. See A Sample KnotTheory` Session.

Modifying This Page

Read me first: Modifying Knot Pages

See/edit the Link Page master template (intermediate).

See/edit the Link_Splice_Base (expert).

Back to the top.