L11n22

From Knot Atlas
Jump to: navigation, search

L11n21.gif

L11n21

L11n23.gif

L11n23

Contents

L11n22.gif
(Knotscape image)
See the full Thistlethwaite Link Table (up to 11 crossings).

Visit L11n22 at Knotilus!


Link Presentations

[edit Notes on L11n22's Link Presentations]

Planar diagram presentation X6172 X16,7,17,8 X4,17,1,18 X9,21,10,20 X3849 X21,18,22,19 X11,14,12,15 X5,13,6,12 X13,5,14,22 X19,11,20,10 X15,2,16,3
Gauss code {1, 11, -5, -3}, {-8, -1, 2, 5, -4, 10, -7, 8, -9, 7, -11, -2, 3, 6, -10, 4, -6, 9}
A Braid Representative
BraidPart1.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart3.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gif
BraidPart2.gifBraidPart1.gifBraidPart0.gifBraidPart1.gifBraidPart4.gifBraidPart3.gifBraidPart0.gifBraidPart3.gifBraidPart0.gifBraidPart3.gifBraidPart0.gifBraidPart0.gif
BraidPart0.gifBraidPart2.gifBraidPart3.gifBraidPart2.gifBraidPart0.gifBraidPart4.gifBraidPart3.gifBraidPart4.gifBraidPart3.gifBraidPart4.gifBraidPart3.gifBraidPart0.gif
BraidPart0.gifBraidPart0.gifBraidPart4.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart4.gifBraidPart0.gifBraidPart4.gifBraidPart1.gifBraidPart4.gifBraidPart1.gif
BraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart2.gifBraidPart0.gifBraidPart2.gif
A Morse Link Presentation L11n22 ML.gif

Polynomial invariants

Multivariable Alexander Polynomial (in u, v, w, ...) -\frac{t(1) t(2)^5-4 t(1) t(2)^4+4 t(1) t(2)^3+4 t(2)^2-4 t(2)+1}{\sqrt{t(1)} t(2)^{5/2}} (db)
Jones polynomial \frac{3}{q^{9/2}}-\frac{6}{q^{7/2}}-q^{5/2}+\frac{6}{q^{5/2}}+2 q^{3/2}-\frac{5}{q^{3/2}}+\frac{1}{q^{13/2}}-\frac{3}{q^{11/2}}-4 \sqrt{q}+\frac{5}{\sqrt{q}} (db)
Signature -3 (db)
HOMFLY-PT polynomial -z a^7+z^5 a^5+4 z^3 a^5+3 z a^5+2 a^5 z^{-1} -z^7 a^3-5 z^5 a^3-8 z^3 a^3-8 z a^3-4 a^3 z^{-1} +2 z^5 a+8 z^3 a+7 z a+3 a z^{-1} -z^3 a^{-1} -3 z a^{-1} - a^{-1} z^{-1} (db)
Kauffman polynomial a^8 z^2+3 a^7 z^3-3 a^7 z+a^6 z^6-a^6 z^4+a^6 z^2+a^6+3 a^5 z^7-12 a^5 z^5+20 a^5 z^3-15 a^5 z+2 a^5 z^{-1} +3 a^4 z^8-11 a^4 z^6+11 a^4 z^4-4 a^4 z^2+2 a^4+a^3 z^9+2 a^3 z^7-23 a^3 z^5+37 a^3 z^3-23 a^3 z+4 a^3 z^{-1} +5 a^2 z^8-21 a^2 z^6+23 a^2 z^4-9 a^2 z^2+3 a^2+a z^9+z^7 a^{-1} -16 a z^5-5 z^5 a^{-1} +28 a z^3+8 z^3 a^{-1} -16 a z-5 z a^{-1} +3 a z^{-1} + a^{-1} z^{-1} +2 z^8-9 z^6+11 z^4-5 z^2+1 (db)

Khovanov Homology

The coefficients of the monomials t^rq^j are shown, along with their alternating sums \chi (fixed j, alternation over r).   
\ r
  \  
j \
-5-4-3-2-101234χ
6         11
4        1 -1
2       31 2
0      21  -1
-2    143   0
-4    43    -1
-6   33     0
-8 124      3
-10 22       0
-12 2        2
-141         -1
Integral Khovanov Homology

(db, data source)

  
\dim{\mathcal G}_{2r+i}\operatorname{KH}^r_{\mathbb Z} i=-4 i=-2 i=0
r=-5 {\mathbb Z}
r=-4 {\mathbb Z}^{2}\oplus{\mathbb Z}_2 {\mathbb Z}^{2} {\mathbb Z}
r=-3 {\mathbb Z}^{2}\oplus{\mathbb Z}_2^{2} {\mathbb Z}^{2}
r=-2 {\mathbb Z}^{4}\oplus{\mathbb Z}_2^{2} {\mathbb Z}^{3}
r=-1 {\mathbb Z}^{3}\oplus{\mathbb Z}_2^{4} {\mathbb Z}^{4}\oplus{\mathbb Z}_2 {\mathbb Z}
r=0 {\mathbb Z}^{3}\oplus{\mathbb Z}_2^{3} {\mathbb Z}^{4}
r=1 {\mathbb Z}^{3}\oplus{\mathbb Z}_2^{2} {\mathbb Z}^{2}
r=2 {\mathbb Z}\oplus{\mathbb Z}_2^{3} {\mathbb Z}^{3}
r=3 {\mathbb Z}\oplus{\mathbb Z}_2 {\mathbb Z}
r=4 {\mathbb Z}_2 {\mathbb Z}

Computer Talk

Much of the above data can be recomputed by Mathematica using the package KnotTheory`. See A Sample KnotTheory` Session.

Modifying This Page

Read me first: Modifying Knot Pages

See/edit the Link Page master template (intermediate).

See/edit the Link_Splice_Base (expert).

Back to the top.

L11n21.gif

L11n21

L11n23.gif

L11n23