L11n23

From Knot Atlas
Jump to: navigation, search

L11n22.gif

L11n22

L11n24.gif

L11n24

Contents

L11n23.gif
(Knotscape image)
See the full Thistlethwaite Link Table (up to 11 crossings).

Visit L11n23 at Knotilus!


Link Presentations

[edit Notes on L11n23's Link Presentations]

Planar diagram presentation X6172 X16,7,17,8 X17,1,18,4 X9,21,10,20 X3849 X21,18,22,19 X11,14,12,15 X5,13,6,12 X13,5,14,22 X19,11,20,10 X2,16,3,15
Gauss code {1, -11, -5, 3}, {-8, -1, 2, 5, -4, 10, -7, 8, -9, 7, 11, -2, -3, 6, -10, 4, -6, 9}
A Braid Representative
BraidPart1.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart3.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gif
BraidPart2.gifBraidPart1.gifBraidPart0.gifBraidPart1.gifBraidPart4.gifBraidPart3.gifBraidPart0.gifBraidPart3.gifBraidPart0.gifBraidPart1.gifBraidPart0.gifBraidPart0.gif
BraidPart0.gifBraidPart2.gifBraidPart3.gifBraidPart2.gifBraidPart0.gifBraidPart4.gifBraidPart1.gifBraidPart4.gifBraidPart3.gifBraidPart2.gifBraidPart3.gifBraidPart0.gif
BraidPart0.gifBraidPart0.gifBraidPart4.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart2.gifBraidPart0.gifBraidPart4.gifBraidPart1.gifBraidPart4.gifBraidPart1.gif
BraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart2.gifBraidPart0.gifBraidPart2.gif
A Morse Link Presentation L11n23 ML.gif

Polynomial invariants

Multivariable Alexander Polynomial (in u, v, w, ...) \frac{(u-1) (v-1) \left(v^2-4 v+1\right)}{\sqrt{u} v^{3/2}} (db)
Jones polynomial -q^{9/2}+\frac{1}{q^{9/2}}+3 q^{7/2}-\frac{3}{q^{7/2}}-6 q^{5/2}+\frac{4}{q^{5/2}}+7 q^{3/2}-\frac{7}{q^{3/2}}-8 \sqrt{q}+\frac{8}{\sqrt{q}} (db)
Signature 1 (db)
HOMFLY-PT polynomial - a^{-5} z^{-1} -a^3 z^3-a^3 z+4 z a^{-3} +3 a^{-3} z^{-1} +a z^5+3 a z^3-4 z^3 a^{-1} +5 a z-8 z a^{-1} +2 a z^{-1} -4 a^{-1} z^{-1} (db)
Kauffman polynomial -a z^9-z^9 a^{-1} -3 a^2 z^8-3 z^8 a^{-2} -6 z^8-3 a^3 z^7-4 a z^7-3 z^7 a^{-1} -2 z^7 a^{-3} -a^4 z^6+9 a^2 z^6+12 z^6 a^{-2} +22 z^6+11 a^3 z^5+26 a z^5+22 z^5 a^{-1} +7 z^5 a^{-3} +3 a^4 z^4-5 a^2 z^4-23 z^4 a^{-2} -3 z^4 a^{-4} -28 z^4-10 a^3 z^3-34 a z^3-40 z^3 a^{-1} -17 z^3 a^{-3} -z^3 a^{-5} -a^4 z^2+2 a^2 z^2+15 z^2 a^{-2} +3 z^2 a^{-4} +15 z^2+3 a^3 z+15 a z+24 z a^{-1} +14 z a^{-3} +2 z a^{-5} -a^2-3 a^{-2} - a^{-4} -2-2 a z^{-1} -4 a^{-1} z^{-1} -3 a^{-3} z^{-1} - a^{-5} z^{-1} (db)

Khovanov Homology

The coefficients of the monomials t^rq^j are shown, along with their alternating sums \chi (fixed j, alternation over r).   
\ r
  \  
j \
-5-4-3-2-101234χ
10         11
8        2 -2
6       41 3
4      32  -1
2     54   1
0    55    0
-2   23     -1
-4  25      3
-6 12       -1
-8 2        2
-101         -1
Integral Khovanov Homology

(db, data source)

  
\dim{\mathcal G}_{2r+i}\operatorname{KH}^r_{\mathbb Z} i=0 i=2
r=-5 {\mathbb Z}
r=-4 {\mathbb Z}^{2}\oplus{\mathbb Z}_2 {\mathbb Z}
r=-3 {\mathbb Z}^{2}\oplus{\mathbb Z}_2^{2} {\mathbb Z}^{2}
r=-2 {\mathbb Z}^{5}\oplus{\mathbb Z}_2^{2} {\mathbb Z}^{2}
r=-1 {\mathbb Z}^{3}\oplus{\mathbb Z}_2^{5} {\mathbb Z}^{5}
r=0 {\mathbb Z}^{5}\oplus{\mathbb Z}_2^{3} {\mathbb Z}^{5}
r=1 {\mathbb Z}^{4}\oplus{\mathbb Z}_2^{3} {\mathbb Z}^{3}
r=2 {\mathbb Z}^{2}\oplus{\mathbb Z}_2^{4} {\mathbb Z}^{4}
r=3 {\mathbb Z}\oplus{\mathbb Z}_2^{2} {\mathbb Z}^{2}
r=4 {\mathbb Z}_2 {\mathbb Z}

Computer Talk

Much of the above data can be recomputed by Mathematica using the package KnotTheory`. See A Sample KnotTheory` Session.

Modifying This Page

Read me first: Modifying Knot Pages

See/edit the Link Page master template (intermediate).

See/edit the Link_Splice_Base (expert).

Back to the top.

L11n22.gif

L11n22

L11n24.gif

L11n24