L11n220

From Knot Atlas
Jump to: navigation, search

L11n219.gif

L11n219

L11n221.gif

L11n221

Contents

L11n220.gif
(Knotscape image)
See the full Thistlethwaite Link Table (up to 11 crossings).

Visit L11n220 at Knotilus!


Link Presentations

[edit Notes on L11n220's Link Presentations]

Planar diagram presentation X10,1,11,2 X8,9,1,10 X3,12,4,13 X15,22,16,9 X2,17,3,18 X21,4,22,5 X14,5,15,6 X20,13,21,14 X11,16,12,17 X6,19,7,20 X18,7,19,8
Gauss code {1, -5, -3, 6, 7, -10, 11, -2}, {2, -1, -9, 3, 8, -7, -4, 9, 5, -11, 10, -8, -6, 4}
A Braid Representative
BraidPart1.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart3.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gif
BraidPart2.gifBraidPart1.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart3.gifBraidPart4.gifBraidPart3.gifBraidPart0.gifBraidPart3.gifBraidPart0.gifBraidPart3.gifBraidPart0.gifBraidPart0.gifBraidPart3.gifBraidPart0.gif
BraidPart0.gifBraidPart2.gifBraidPart3.gifBraidPart0.gifBraidPart3.gifBraidPart4.gifBraidPart0.gifBraidPart4.gifBraidPart3.gifBraidPart4.gifBraidPart3.gifBraidPart4.gifBraidPart3.gifBraidPart3.gifBraidPart4.gifBraidPart3.gif
BraidPart0.gifBraidPart0.gifBraidPart4.gifBraidPart3.gifBraidPart4.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart4.gifBraidPart0.gifBraidPart4.gifBraidPart1.gifBraidPart4.gifBraidPart4.gifBraidPart0.gifBraidPart4.gif
BraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart4.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart2.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gif
A Morse Link Presentation L11n220 ML.gif

Polynomial invariants

Multivariable Alexander Polynomial (in u, v, w, ...) -\frac{t(1)^2 t(2)^5+t(1)^3 t(2)^4-t(1)^2 t(2)^4+t(1)^2 t(2)^3+t(1) t(2)^2-t(1) t(2)+t(2)+t(1)}{t(1)^{3/2} t(2)^{5/2}} (db)
Jones polynomial -\frac{1}{q^{7/2}}+\frac{1}{q^{9/2}}-\frac{2}{q^{11/2}}+\frac{2}{q^{13/2}}-\frac{3}{q^{15/2}}+\frac{2}{q^{17/2}}-\frac{2}{q^{19/2}}+\frac{2}{q^{21/2}}-\frac{1}{q^{23/2}} (db)
Signature -7 (db)
HOMFLY-PT polynomial a^{13} (-z)-a^{13} z^{-1} +a^{11} z^5+6 a^{11} z^3+9 a^{11} z+3 a^{11} z^{-1} -a^9 z^7-6 a^9 z^5-11 a^9 z^3-8 a^9 z-2 a^9 z^{-1} -a^7 z^7-6 a^7 z^5-10 a^7 z^3-4 a^7 z (db)
Kauffman polynomial a^{15} z+a^{14} z^2+a^{14}+a^{13} z^5-3 a^{13} z^3+3 a^{13} z-a^{13} z^{-1} +a^{12} z^8-6 a^{12} z^6+13 a^{12} z^4-12 a^{12} z^2+3 a^{12}+a^{11} z^9-7 a^{11} z^7+20 a^{11} z^5-29 a^{11} z^3+16 a^{11} z-3 a^{11} z^{-1} +2 a^{10} z^8-11 a^{10} z^6+19 a^{10} z^4-14 a^{10} z^2+3 a^{10}+a^9 z^9-6 a^9 z^7+13 a^9 z^5-16 a^9 z^3+10 a^9 z-2 a^9 z^{-1} +a^8 z^8-5 a^8 z^6+6 a^8 z^4-a^8 z^2+a^7 z^7-6 a^7 z^5+10 a^7 z^3-4 a^7 z (db)

Khovanov Homology

The coefficients of the monomials t^rq^j are shown, along with their alternating sums \chi (fixed j, alternation over r).   
\ r
  \  
j \
-8-7-6-5-4-3-2-10χ
-6        11
-8       110
-10      1  1
-12     11  0
-14    21   1
-16    1    1
-18  22     0
-20         0
-2212       -1
-241        1
Integral Khovanov Homology

(db, data source)

  
\dim{\mathcal G}_{2r+i}\operatorname{KH}^r_{\mathbb Z} i=-8 i=-6
r=-8 {\mathbb Z} {\mathbb Z}
r=-7 {\mathbb Z}^{2}
r=-6 {\mathbb Z}_2^{2} {\mathbb Z}^{2}
r=-5 {\mathbb Z}^{2}
r=-4 {\mathbb Z}\oplus{\mathbb Z}_2^{2} {\mathbb Z}^{2}
r=-3 {\mathbb Z}\oplus{\mathbb Z}_2 {\mathbb Z}
r=-2 {\mathbb Z}\oplus{\mathbb Z}_2 {\mathbb Z}
r=-1 {\mathbb Z}_2 {\mathbb Z}
r=0 {\mathbb Z} {\mathbb Z}

Computer Talk

Much of the above data can be recomputed by Mathematica using the package KnotTheory`. See A Sample KnotTheory` Session.

Modifying This Page

Read me first: Modifying Knot Pages

See/edit the Link Page master template (intermediate).

See/edit the Link_Splice_Base (expert).

Back to the top.

L11n219.gif

L11n219

L11n221.gif

L11n221