From Knot Atlas
Jump to: navigation, search






(Knotscape image)
See the full Thistlethwaite Link Table (up to 11 crossings).

Visit L11n239 at Knotilus!

Link Presentations

[edit Notes on L11n239's Link Presentations]

Planar diagram presentation X12,1,13,2 X7,16,8,17 X5,1,6,10 X3746 X9,5,10,4 X18,14,19,13 X22,20,11,19 X20,15,21,16 X14,21,15,22 X2,11,3,12 X17,8,18,9
Gauss code {1, -10, -4, 5, -3, 4, -2, 11, -5, 3}, {10, -1, 6, -9, 8, 2, -11, -6, 7, -8, 9, -7}
A Braid Representative
A Morse Link Presentation L11n239 ML.gif

Polynomial invariants

Multivariable Alexander Polynomial (in u, v, w, ...) \frac{-2 u^3 v+u^3+2 u^2 v^2-2 u^2 v-2 u v^2+2 u v+v^3-2 v^2}{u^{3/2} v^{3/2}} (db)
Jones polynomial q^{9/2}-2 q^{7/2}+2 q^{5/2}-2 q^{3/2}+\sqrt{q}-\frac{1}{\sqrt{q}}+\frac{1}{q^{5/2}}-\frac{2}{q^{7/2}}+\frac{1}{q^{9/2}}-\frac{1}{q^{11/2}} (db)
Signature -1 (db)
HOMFLY-PT polynomial z a^5+2 a^5 z^{-1} -2 z^3 a^3-7 z a^3-5 a^3 z^{-1} +z^5 a+6 z^3 a+10 z a+6 a z^{-1} -z^5 a^{-1} -5 z^3 a^{-1} -8 z a^{-1} -4 a^{-1} z^{-1} +z^3 a^{-3} +2 z a^{-3} + a^{-3} z^{-1} (db)
Kauffman polynomial -a^4 z^8-a^2 z^8-z^8 a^{-2} -z^8-a^5 z^7-3 a^3 z^7-3 a z^7-3 z^7 a^{-1} -2 z^7 a^{-3} +5 a^4 z^6+6 a^2 z^6+3 z^6 a^{-2} -z^6 a^{-4} +5 z^6+6 a^5 z^5+19 a^3 z^5+22 a z^5+18 z^5 a^{-1} +9 z^5 a^{-3} -5 a^4 z^4-6 a^2 z^4+4 z^4 a^{-2} +4 z^4 a^{-4} -z^4-11 a^5 z^3-33 a^3 z^3-42 a z^3-29 z^3 a^{-1} -9 z^3 a^{-3} -a^2 z^2-9 z^2 a^{-2} -3 z^2 a^{-4} -7 z^2+8 a^5 z+22 a^3 z+28 a z+18 z a^{-1} +4 z a^{-3} +a^4+a^2+3 a^{-2} + a^{-4} +3-2 a^5 z^{-1} -5 a^3 z^{-1} -6 a z^{-1} -4 a^{-1} z^{-1} - a^{-3} z^{-1} (db)

Khovanov Homology

The coefficients of the monomials t^rq^j are shown, along with their alternating sums \chi (fixed j, alternation over r).   
\ r
j \
10           1-1
8          1 1
6         11 0
4       121  0
2      111   1
0     132    0
-2    122     1
-4   111      -1
-6  111       1
-8 12         1
-10            0
-121           1
Integral Khovanov Homology

(db, data source)

\dim{\mathcal G}_{2r+i}\operatorname{KH}^r_{\mathbb Z} i=-2 i=0 i=2
r=-6 {\mathbb Z}
r=-5 {\mathbb Z}_2 {\mathbb Z}
r=-4 {\mathbb Z}^{2} {\mathbb Z}
r=-3 {\mathbb Z}\oplus{\mathbb Z}_2 {\mathbb Z}
r=-2 {\mathbb Z} {\mathbb Z}\oplus{\mathbb Z}_2 {\mathbb Z}
r=-1 {\mathbb Z}\oplus{\mathbb Z}_2 {\mathbb Z}^{2}\oplus{\mathbb Z}_2 {\mathbb Z}
r=0 {\mathbb Z}^{2}\oplus{\mathbb Z}_2 {\mathbb Z}^{3}\oplus{\mathbb Z}_2 {\mathbb Z}
r=1 {\mathbb Z}^{2}\oplus{\mathbb Z}_2 {\mathbb Z}\oplus{\mathbb Z}_2 {\mathbb Z}
r=2 {\mathbb Z}\oplus{\mathbb Z}_2^{2} {\mathbb Z}^{2}
r=3 {\mathbb Z}\oplus{\mathbb Z}_2 {\mathbb Z}
r=4 {\mathbb Z}\oplus{\mathbb Z}_2 {\mathbb Z}
r=5 {\mathbb Z}_2 {\mathbb Z}

Computer Talk

Much of the above data can be recomputed by Mathematica using the package KnotTheory`. See A Sample KnotTheory` Session.

Modifying This Page

Read me first: Modifying Knot Pages

See/edit the Link Page master template (intermediate).

See/edit the Link_Splice_Base (expert).

Back to the top.