L11n276

From Knot Atlas
Jump to: navigation, search

L11n275.gif

L11n275

L11n277.gif

L11n277

Contents

L11n276.gif
(Knotscape image)
See the full Thistlethwaite Link Table (up to 11 crossings).

Visit L11n276 at Knotilus!


Link Presentations

[edit Notes on L11n276's Link Presentations]

Planar diagram presentation X6172 X5,12,6,13 X3849 X13,2,14,3 X14,7,15,8 X9,18,10,19 X22,17,11,18 X20,11,21,12 X16,21,17,22 X4,15,1,16 X19,10,20,5
Gauss code {1, 4, -3, -10}, {-2, -1, 5, 3, -6, 11}, {8, 2, -4, -5, 10, -9, 7, 6, -11, -8, 9, -7}
A Braid Representative
BraidPart1.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart3.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gif
BraidPart2.gifBraidPart3.gifBraidPart3.gifBraidPart0.gifBraidPart0.gifBraidPart3.gifBraidPart4.gifBraidPart3.gifBraidPart0.gifBraidPart3.gifBraidPart0.gifBraidPart3.gif
BraidPart0.gifBraidPart4.gifBraidPart4.gifBraidPart3.gifBraidPart3.gifBraidPart4.gifBraidPart3.gifBraidPart4.gifBraidPart3.gifBraidPart4.gifBraidPart3.gifBraidPart4.gif
BraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart4.gifBraidPart4.gifBraidPart0.gifBraidPart4.gifBraidPart0.gifBraidPart4.gifBraidPart0.gifBraidPart4.gifBraidPart0.gif
A Morse Link Presentation L11n276 ML.gif

Polynomial invariants

Multivariable Alexander Polynomial (in u, v, w, ...) \frac{u v^2 w^4-u v w^3+u v w^2-v w^2+v w-1}{\sqrt{u} v w^2} (db)
Jones polynomial - q^{-12} + q^{-11} - q^{-10} +2 q^{-9} + q^{-7} + q^{-6} + q^{-4} (db)
Signature -6 (db)
HOMFLY-PT polynomial -a^{14} z^{-2} +2 z^2 a^{12}+4 a^{12} z^{-2} +6 a^{12}-z^6 a^{10}-8 z^4 a^{10}-19 z^2 a^{10}-5 a^{10} z^{-2} -16 a^{10}+z^8 a^8+8 z^6 a^8+21 z^4 a^8+22 z^2 a^8+2 a^8 z^{-2} +10 a^8 (db)
Kauffman polynomial a^{15} z^3-2 a^{15} z+a^{15} z^{-1} +a^{14} z^4-2 a^{14} z^2-a^{14} z^{-2} +2 a^{14}-a^{13} z^5+8 a^{13} z^3-13 a^{13} z+5 a^{13} z^{-1} -a^{12} z^6+7 a^{12} z^4-14 a^{12} z^2-4 a^{12} z^{-2} +13 a^{12}+a^{11} z^7-9 a^{11} z^5+26 a^{11} z^3-27 a^{11} z+9 a^{11} z^{-1} +a^{10} z^8-9 a^{10} z^6+27 a^{10} z^4-34 a^{10} z^2-5 a^{10} z^{-2} +20 a^{10}+a^9 z^7-8 a^9 z^5+19 a^9 z^3-16 a^9 z+5 a^9 z^{-1} +a^8 z^8-8 a^8 z^6+21 a^8 z^4-22 a^8 z^2-2 a^8 z^{-2} +10 a^8 (db)

Khovanov Homology

The coefficients of the monomials t^rq^j are shown, along with their alternating sums \chi (fixed j, alternation over r).   
\ r
  \  
j \
-9-8-7-6-5-4-3-2-10χ
-7         11
-9         11
-11       1  1
-13     2    2
-15     21   1
-17   31     2
-19   21     1
-21 11       0
-23          0
-251         -1
Integral Khovanov Homology

(db, data source)

  
\dim{\mathcal G}_{2r+i}\operatorname{KH}^r_{\mathbb Z} i=-9 i=-7 i=-5
r=-9 {\mathbb Z}
r=-8 {\mathbb Z}_2 {\mathbb Z}
r=-7 {\mathbb Z}
r=-6 {\mathbb Z}^{2}\oplus{\mathbb Z}_2 {\mathbb Z}^{3}
r=-5 {\mathbb Z} {\mathbb Z}
r=-4 {\mathbb Z}^{2} {\mathbb Z}^{2}
r=-3 {\mathbb Z}
r=-2 {\mathbb Z}_2 {\mathbb Z}
r=-1
r=0 {\mathbb Z} {\mathbb Z}

Computer Talk

Much of the above data can be recomputed by Mathematica using the package KnotTheory`. See A Sample KnotTheory` Session.

Modifying This Page

Read me first: Modifying Knot Pages

See/edit the Link Page master template (intermediate).

See/edit the Link_Splice_Base (expert).

Back to the top.

L11n275.gif

L11n275

L11n277.gif

L11n277