From Knot Atlas
Jump to: navigation, search






(Knotscape image)
See the full Thistlethwaite Link Table (up to 11 crossings).

Visit L11n277 at Knotilus!

Link Presentations

[edit Notes on L11n277's Link Presentations]

Planar diagram presentation X6172 X5,12,6,13 X3849 X2,14,3,13 X14,7,15,8 X9,18,10,19 X22,17,11,18 X20,11,21,12 X16,21,17,22 X15,1,16,4 X19,10,20,5
Gauss code {1, -4, -3, 10}, {-2, -1, 5, 3, -6, 11}, {8, 2, 4, -5, -10, -9, 7, 6, -11, -8, 9, -7}
A Braid Representative
A Morse Link Presentation L11n277 ML.gif

Polynomial invariants

Multivariable Alexander Polynomial (in u, v, w, ...) -\frac{u v w^4-u v w^3+u v w^2-u v w+u w-v^2 w^3+v w^3-v w^2+v w-v}{\sqrt{u} v w^2} (db)
Jones polynomial 2 q^{-2} - q^{-3} +4 q^{-4} -3 q^{-5} +4 q^{-6} -3 q^{-7} +2 q^{-8} - q^{-9} (db)
Signature -4 (db)
HOMFLY-PT polynomial -a^{10} z^{-2} -a^{10}+z^4 a^8+5 z^2 a^8+4 a^8 z^{-2} +8 a^8-z^6 a^6-6 z^4 a^6-14 z^2 a^6-5 a^6 z^{-2} -15 a^6+2 z^4 a^4+8 z^2 a^4+2 a^4 z^{-2} +8 a^4 (db)
Kauffman polynomial z^3 a^{11}-2 z a^{11}+a^{11} z^{-1} +2 z^4 a^{10}-3 z^2 a^{10}-a^{10} z^{-2} +2 a^{10}+z^7 a^9-5 z^5 a^9+14 z^3 a^9-13 z a^9+5 a^9 z^{-1} +z^8 a^8-6 z^6 a^8+18 z^4 a^8-21 z^2 a^8-4 a^8 z^{-2} +13 a^8+2 z^7 a^7-10 z^5 a^7+26 z^3 a^7-27 z a^7+9 a^7 z^{-1} +z^8 a^6-6 z^6 a^6+19 z^4 a^6-29 z^2 a^6-5 a^6 z^{-2} +20 a^6+z^7 a^5-5 z^5 a^5+13 z^3 a^5-16 z a^5+5 a^5 z^{-1} +3 z^4 a^4-11 z^2 a^4-2 a^4 z^{-2} +10 a^4 (db)

Khovanov Homology

The coefficients of the monomials t^rq^j are shown, along with their alternating sums \chi (fixed j, alternation over r).   
\ r
j \
-3       22
-5      121
-7     3  3
-9    12  1
-11   32   1
-13   1    1
-15 23     -1
-17 1      1
-191       -1
Integral Khovanov Homology

(db, data source)

\dim{\mathcal G}_{2r+i}\operatorname{KH}^r_{\mathbb Z} i=-5 i=-3
r=-7 {\mathbb Z}
r=-6 {\mathbb Z}\oplus{\mathbb Z}_2 {\mathbb Z}^{2}
r=-5 {\mathbb Z}^{3}
r=-4 {\mathbb Z}\oplus{\mathbb Z}_2^{3} {\mathbb Z}^{3}
r=-3 {\mathbb Z}^{2}\oplus{\mathbb Z}_2 {\mathbb Z}
r=-2 {\mathbb Z}^{2}\oplus{\mathbb Z}_2^{2} {\mathbb Z}^{3}
r=-1 {\mathbb Z}_2 {\mathbb Z}
r=0 {\mathbb Z}^{2} {\mathbb Z}^{2}

Computer Talk

Much of the above data can be recomputed by Mathematica using the package KnotTheory`. See A Sample KnotTheory` Session.

Modifying This Page

Read me first: Modifying Knot Pages

See/edit the Link Page master template (intermediate).

See/edit the Link_Splice_Base (expert).

Back to the top.