L11n293

From Knot Atlas
Jump to: navigation, search

L11n292.gif

L11n292

L11n294.gif

L11n294

Contents

L11n293.gif
(Knotscape image)
See the full Thistlethwaite Link Table (up to 11 crossings).

Visit L11n293 at Knotilus!


Link Presentations

[edit Notes on L11n293's Link Presentations]

Planar diagram presentation X6172 X11,18,12,19 X8493 X2,16,3,15 X16,7,17,8 X9,11,10,22 X4,17,1,18 X19,5,20,10 X5,12,6,13 X21,15,22,14 X13,21,14,20
Gauss code {1, -4, 3, -7}, {-9, -1, 5, -3, -6, 8}, {-2, 9, -11, 10, 4, -5, 7, 2, -8, 11, -10, 6}
A Braid Representative
BraidPart3.gifBraidPart0.gifBraidPart3.gifBraidPart0.gifBraidPart3.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gif
BraidPart4.gifBraidPart1.gifBraidPart4.gifBraidPart1.gifBraidPart4.gifBraidPart3.gifBraidPart0.gifBraidPart3.gifBraidPart0.gifBraidPart0.gif
BraidPart0.gifBraidPart2.gifBraidPart0.gifBraidPart2.gifBraidPart1.gifBraidPart4.gifBraidPart1.gifBraidPart4.gifBraidPart1.gifBraidPart1.gif
BraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart2.gifBraidPart0.gifBraidPart2.gifBraidPart0.gifBraidPart2.gifBraidPart2.gif
A Morse Link Presentation L11n293 ML.gif

Polynomial invariants

Multivariable Alexander Polynomial (in u, v, w, ...) \frac{(t(1)-1) (t(2)-1) (t(3)-1)}{\sqrt{t(1)} \sqrt{t(2)} \sqrt{t(3)}} (db)
Jones polynomial q^6-3 q^5+4 q^4-4 q^3+4 q^2-2 q+3+ q^{-1} - q^{-2} +2 q^{-3} - q^{-4} (db)
Signature 0 (db)
HOMFLY-PT polynomial z^4 a^{-4} +2 z^2 a^{-4} + a^{-4} -z^6 a^{-2} -a^2 z^4-5 z^4 a^{-2} -3 a^2 z^2-8 z^2 a^{-2} +a^2 z^{-2} + a^{-2} z^{-2} -a^2-3 a^{-2} +z^6+6 z^4+9 z^2-2 z^{-2} +3 (db)
Kauffman polynomial z^6 a^{-6} -3 z^4 a^{-6} +z^2 a^{-6} +3 z^7 a^{-5} -11 z^5 a^{-5} +7 z^3 a^{-5} -2 z a^{-5} +3 z^8 a^{-4} -12 z^6 a^{-4} +10 z^4 a^{-4} -6 z^2 a^{-4} +2 a^{-4} +z^9 a^{-3} +a^3 z^7-z^7 a^{-3} -5 a^3 z^5-13 z^5 a^{-3} +5 a^3 z^3+20 z^3 a^{-3} -a^3 z-7 z a^{-3} +2 a^2 z^8+5 z^8 a^{-2} -12 a^2 z^6-30 z^6 a^{-2} +19 a^2 z^4+50 z^4 a^{-2} -13 a^2 z^2-30 z^2 a^{-2} +a^2 z^{-2} + a^{-2} z^{-2} +2 a^2+6 a^{-2} +a z^9+2 z^9 a^{-1} -5 a z^7-10 z^7 a^{-1} +3 z^5 a^{-1} +11 a z^3+19 z^3 a^{-1} -5 a z-9 z a^{-1} -2 a z^{-1} -2 a^{-1} z^{-1} +4 z^8-29 z^6+56 z^4-36 z^2+2 z^{-2} +7 (db)

Khovanov Homology

The coefficients of the monomials t^rq^j are shown, along with their alternating sums \chi (fixed j, alternation over r).   
\ r
  \  
j \
-5-4-3-2-10123456χ
13           11
11          2 -2
9         21 1
7       132  0
5      132   0
3     233    2
1    263     1
-1   125      4
-3  121       0
-5 111        1
-7 1          1
-91           -1
Integral Khovanov Homology

(db, data source)

  
\dim{\mathcal G}_{2r+i}\operatorname{KH}^r_{\mathbb Z} i=-1 i=1 i=3
r=-5 {\mathbb Z}
r=-4 {\mathbb Z}\oplus{\mathbb Z}_2 {\mathbb Z}
r=-3 {\mathbb Z}\oplus{\mathbb Z}_2 {\mathbb Z}
r=-2 {\mathbb Z} {\mathbb Z}^{2}\oplus{\mathbb Z}_2 {\mathbb Z}
r=-1 {\mathbb Z}\oplus{\mathbb Z}_2 {\mathbb Z}^{2}\oplus{\mathbb Z}_2^{2} {\mathbb Z}^{2}
r=0 {\mathbb Z}^{5}\oplus{\mathbb Z}_2 {\mathbb Z}^{6}\oplus{\mathbb Z}_2 {\mathbb Z}^{2}
r=1 {\mathbb Z}^{3}\oplus{\mathbb Z}_2^{2} {\mathbb Z}^{3}\oplus{\mathbb Z}_2 {\mathbb Z}
r=2 {\mathbb Z}^{3}\oplus{\mathbb Z}_2^{3} {\mathbb Z}^{3}\oplus{\mathbb Z}_2 {\mathbb Z}
r=3 {\mathbb Z}^{2}\oplus{\mathbb Z}_2^{3} {\mathbb Z}^{3}
r=4 {\mathbb Z}^{2}\oplus{\mathbb Z}_2^{2} {\mathbb Z}^{2}
r=5 {\mathbb Z}\oplus{\mathbb Z}_2^{2} {\mathbb Z}^{2}
r=6 {\mathbb Z}_2 {\mathbb Z}

Computer Talk

Much of the above data can be recomputed by Mathematica using the package KnotTheory`. See A Sample KnotTheory` Session.

Modifying This Page

Read me first: Modifying Knot Pages

See/edit the Link Page master template (intermediate).

See/edit the Link_Splice_Base (expert).

Back to the top.

L11n292.gif

L11n292

L11n294.gif

L11n294