L11n294

From Knot Atlas
Jump to: navigation, search

L11n293.gif

L11n293

L11n295.gif

L11n295

Contents

L11n294.gif
(Knotscape image)
See the full Thistlethwaite Link Table (up to 11 crossings).

Visit L11n294 at Knotilus!


Link Presentations

[edit Notes on L11n294's Link Presentations]

Planar diagram presentation X6172 X12,4,13,3 X20,16,21,15 X14,8,15,7 X10,22,5,21 X11,19,12,18 X9,17,10,16 X17,11,18,22 X19,9,20,8 X2536 X4,14,1,13
Gauss code {1, -10, 2, -11}, {10, -1, 4, 9, -7, -5}, {-6, -2, 11, -4, 3, 7, -8, 6, -9, -3, 5, 8}
A Braid Representative
BraidPart1.gifBraidPart0.gifBraidPart1.gifBraidPart1.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart1.gifBraidPart0.gif
BraidPart2.gifBraidPart1.gifBraidPart2.gifBraidPart2.gifBraidPart1.gifBraidPart1.gifBraidPart0.gifBraidPart1.gifBraidPart2.gifBraidPart1.gif
BraidPart0.gifBraidPart2.gifBraidPart3.gifBraidPart0.gifBraidPart2.gifBraidPart2.gifBraidPart3.gifBraidPart2.gifBraidPart0.gifBraidPart2.gif
BraidPart0.gifBraidPart0.gifBraidPart4.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart4.gifBraidPart0.gifBraidPart0.gifBraidPart0.gif
A Morse Link Presentation L11n294 ML.gif

Polynomial invariants

Multivariable Alexander Polynomial (in u, v, w, ...) -\frac{t(1) t(2)^2 t(3)^4-t(2)^2 t(3)^4-t(1) t(2) t(3)^4+t(2)^2 t(3)^3+t(1) t(2) t(3)^2-t(2) t(3)^2-t(1) t(3)+t(1)+t(2)-1}{\sqrt{t(1)} t(2) t(3)^2} (db)
Jones polynomial -q^8+q^7-q^6+3 q^5-q^4+3 q^3-q^2+q (db)
Signature 6 (db)
HOMFLY-PT polynomial -z^8 a^{-6} +z^6 a^{-4} -7 z^6 a^{-6} +z^6 a^{-8} +6 z^4 a^{-4} -17 z^4 a^{-6} +6 z^4 a^{-8} +11 z^2 a^{-4} -21 z^2 a^{-6} +10 z^2 a^{-8} -z^2 a^{-10} +8 a^{-4} -15 a^{-6} +8 a^{-8} - a^{-10} +2 a^{-4} z^{-2} -5 a^{-6} z^{-2} +4 a^{-8} z^{-2} - a^{-10} z^{-2} (db)
Kauffman polynomial -2 z a^{-11} + a^{-11} z^{-1} -3 z^2 a^{-10} - a^{-10} z^{-2} +2 a^{-10} +2 z^7 a^{-9} -12 z^5 a^{-9} +19 z^3 a^{-9} -13 z a^{-9} +5 a^{-9} z^{-1} +3 z^8 a^{-8} -19 z^6 a^{-8} +36 z^4 a^{-8} -29 z^2 a^{-8} -4 a^{-8} z^{-2} +13 a^{-8} +z^9 a^{-7} -3 z^7 a^{-7} -9 z^5 a^{-7} +31 z^3 a^{-7} -27 z a^{-7} +9 a^{-7} z^{-1} +4 z^8 a^{-6} -26 z^6 a^{-6} +53 z^4 a^{-6} -45 z^2 a^{-6} -5 a^{-6} z^{-2} +20 a^{-6} +z^9 a^{-5} -5 z^7 a^{-5} +3 z^5 a^{-5} +12 z^3 a^{-5} -16 z a^{-5} +5 a^{-5} z^{-1} +z^8 a^{-4} -7 z^6 a^{-4} +17 z^4 a^{-4} -19 z^2 a^{-4} -2 a^{-4} z^{-2} +10 a^{-4} (db)

Khovanov Homology

The coefficients of the monomials t^rq^j are shown, along with their alternating sums \chi (fixed j, alternation over r).   
\ r
  \  
j \
-2-10123456χ
17       21-1
15      1210
13     22  0
11    112  2
9   13    2
7  211    2
5 13      2
3         0
11        1
Integral Khovanov Homology

(db, data source)

  
\dim{\mathcal G}_{2r+i}\operatorname{KH}^r_{\mathbb Z} i=3 i=5 i=7
r=-2 {\mathbb Z}
r=-1 {\mathbb Z}_2 {\mathbb Z}
r=0 {\mathbb Z}^{3} {\mathbb Z}^{2}
r=1 {\mathbb Z}\oplus{\mathbb Z}_2 {\mathbb Z}
r=2 {\mathbb Z} {\mathbb Z}^{3}\oplus{\mathbb Z}_2 {\mathbb Z}
r=3 {\mathbb Z}\oplus{\mathbb Z}_2^{2} {\mathbb Z}^{2}
r=4 {\mathbb Z}^{2} {\mathbb Z}^{2}\oplus{\mathbb Z}_2 {\mathbb Z}
r=5 {\mathbb Z}^{2} {\mathbb Z}^{2}
r=6 {\mathbb Z} {\mathbb Z}

Computer Talk

Much of the above data can be recomputed by Mathematica using the package KnotTheory`. See A Sample KnotTheory` Session.

Modifying This Page

Read me first: Modifying Knot Pages

See/edit the Link Page master template (intermediate).

See/edit the Link_Splice_Base (expert).

Back to the top.

L11n293.gif

L11n293

L11n295.gif

L11n295