L11n300

From Knot Atlas
Jump to: navigation, search

L11n299.gif

L11n299

L11n301.gif

L11n301

Contents

L11n300.gif
(Knotscape image)
See the full Thistlethwaite Link Table (up to 11 crossings).

Visit L11n300 at Knotilus!


Link Presentations

[edit Notes on L11n300's Link Presentations]

Planar diagram presentation X6172 X12,3,13,4 X18,13,19,14 X17,11,18,22 X7,17,8,16 X21,8,22,9 X14,10,15,9 X20,16,21,15 X10,19,5,20 X2536 X4,11,1,12
Gauss code {1, -10, 2, -11}, {10, -1, -5, 6, 7, -9}, {11, -2, 3, -7, 8, 5, -4, -3, 9, -8, -6, 4}
A Braid Representative
BraidPart1.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart3.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gif
BraidPart2.gifBraidPart3.gifBraidPart0.gifBraidPart3.gifBraidPart0.gifBraidPart3.gifBraidPart0.gifBraidPart3.gifBraidPart4.gifBraidPart3.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart1.gifBraidPart0.gifBraidPart1.gifBraidPart0.gifBraidPart3.gif
BraidPart0.gifBraidPart4.gifBraidPart3.gifBraidPart4.gifBraidPart1.gifBraidPart4.gifBraidPart1.gifBraidPart4.gifBraidPart0.gifBraidPart4.gifBraidPart3.gifBraidPart0.gifBraidPart1.gifBraidPart2.gifBraidPart3.gifBraidPart2.gifBraidPart1.gifBraidPart4.gif
BraidPart0.gifBraidPart0.gifBraidPart4.gifBraidPart1.gifBraidPart2.gifBraidPart3.gifBraidPart2.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart4.gifBraidPart1.gifBraidPart2.gifBraidPart0.gifBraidPart4.gifBraidPart3.gifBraidPart2.gifBraidPart0.gif
BraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart2.gifBraidPart3.gifBraidPart4.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart2.gifBraidPart1.gifBraidPart0.gifBraidPart0.gifBraidPart4.gifBraidPart0.gifBraidPart0.gif
BraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart4.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart2.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gif
A Morse Link Presentation L11n300 ML.gif

Polynomial invariants

Multivariable Alexander Polynomial (in u, v, w, ...) -\frac{(t(1)-1) (t(2)+t(3)-1) (t(3) t(2)-t(2)-t(3))}{\sqrt{t(1)} t(2) t(3)} (db)
Jones polynomial q^3-3 q^2+4 q-5+7 q^{-1} -5 q^{-2} +6 q^{-3} -3 q^{-4} +2 q^{-5} (db)
Signature -2 (db)
HOMFLY-PT polynomial a^6 z^{-2} +a^4 z^2-2 a^4 z^{-2} -2 a^4-a^2 z^4+a^2 z^{-2} +z^2 a^{-2} +2 a^2-z^4-z^2 (db)
Kauffman polynomial a^3 z^9+a z^9+a^4 z^8+4 a^2 z^8+3 z^8-3 a^3 z^7+3 z^7 a^{-1} -4 a^4 z^6-16 a^2 z^6+z^6 a^{-2} -11 z^6+a^5 z^5+3 a^3 z^5-9 a z^5-11 z^5 a^{-1} +8 a^4 z^4+21 a^2 z^4-3 z^4 a^{-2} +10 z^4+8 a z^3+8 z^3 a^{-1} +2 a^6 z^2-2 a^4 z^2-9 a^2 z^2+z^2 a^{-2} -4 z^2+2 a^5 z+2 a^3 z-2 a^6-3 a^4-2 a^2-2 a^5 z^{-1} -2 a^3 z^{-1} +a^6 z^{-2} +2 a^4 z^{-2} +a^2 z^{-2} (db)

Khovanov Homology

The coefficients of the monomials t^rq^j are shown, along with their alternating sums \chi (fixed j, alternation over r).   
\ r
  \  
j \
-4-3-2-101234χ
7        11
5       2 -2
3      21 1
1     32  -1
-1    42   2
-3   24    2
-5  43     1
-7 14      3
-912       -1
-112        2
Integral Khovanov Homology

(db, data source)

  
\dim{\mathcal G}_{2r+i}\operatorname{KH}^r_{\mathbb Z} i=-3 i=-1
r=-4 {\mathbb Z}^{2} {\mathbb Z}
r=-3 {\mathbb Z}^{2}\oplus{\mathbb Z}_2 {\mathbb Z}
r=-2 {\mathbb Z}^{4}\oplus{\mathbb Z}_2^{2} {\mathbb Z}^{4}
r=-1 {\mathbb Z}^{3}\oplus{\mathbb Z}_2^{2} {\mathbb Z}^{2}
r=0 {\mathbb Z}^{4}\oplus{\mathbb Z}_2^{3} {\mathbb Z}^{4}
r=1 {\mathbb Z}^{2}\oplus{\mathbb Z}_2^{3} {\mathbb Z}^{3}
r=2 {\mathbb Z}^{2}\oplus{\mathbb Z}_2^{2} {\mathbb Z}^{2}
r=3 {\mathbb Z}\oplus{\mathbb Z}_2^{2} {\mathbb Z}^{2}
r=4 {\mathbb Z}_2 {\mathbb Z}

Computer Talk

Much of the above data can be recomputed by Mathematica using the package KnotTheory`. See A Sample KnotTheory` Session.

Modifying This Page

Read me first: Modifying Knot Pages

See/edit the Link Page master template (intermediate).

See/edit the Link_Splice_Base (expert).

Back to the top.

L11n299.gif

L11n299

L11n301.gif

L11n301