L11n317

From Knot Atlas
Jump to: navigation, search

L11n316.gif

L11n316

L11n318.gif

L11n318

Contents

L11n317.gif
(Knotscape image)
See the full Thistlethwaite Link Table (up to 11 crossings).

Visit L11n317 at Knotilus!


Link Presentations

[edit Notes on L11n317's Link Presentations]

Planar diagram presentation X6172 X12,4,13,3 X16,7,17,8 X9,20,10,21 X11,18,12,19 X19,22,20,11 X8,15,9,16 X21,10,22,5 X14,18,15,17 X2536 X4,14,1,13
Gauss code {1, -10, 2, -11}, {10, -1, 3, -7, -4, 8}, {-5, -2, 11, -9, 7, -3, 9, 5, -6, 4, -8, 6}
A Braid Representative
BraidPart1.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart3.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gif
BraidPart2.gifBraidPart3.gifBraidPart0.gifBraidPart3.gifBraidPart3.gifBraidPart4.gifBraidPart0.gifBraidPart1.gifBraidPart1.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart1.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart3.gif
BraidPart0.gifBraidPart4.gifBraidPart1.gifBraidPart4.gifBraidPart4.gifBraidPart0.gifBraidPart3.gifBraidPart2.gifBraidPart2.gifBraidPart3.gifBraidPart0.gifBraidPart3.gifBraidPart2.gifBraidPart3.gifBraidPart0.gifBraidPart3.gifBraidPart4.gif
BraidPart0.gifBraidPart0.gifBraidPart2.gifBraidPart1.gifBraidPart0.gifBraidPart1.gifBraidPart4.gifBraidPart0.gifBraidPart0.gifBraidPart4.gifBraidPart3.gifBraidPart4.gifBraidPart0.gifBraidPart4.gifBraidPart3.gifBraidPart4.gifBraidPart0.gif
BraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart2.gifBraidPart1.gifBraidPart2.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart4.gifBraidPart3.gifBraidPart0.gifBraidPart0.gifBraidPart4.gifBraidPart0.gifBraidPart0.gif
BraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart2.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart4.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gif
A Morse Link Presentation L11n317 ML.gif

Polynomial invariants

Multivariable Alexander Polynomial (in u, v, w, ...) \frac{u v^2 w^2-2 u v^2 w+u v^2-3 u v w^2+5 u v w-2 u v+u w^2-3 u w+u-v^2 w^2+3 v^2 w-v^2+2 v w^2-5 v w+3 v-w^2+2 w-1}{\sqrt{u} v w} (db)
Jones polynomial -q^2+4 q-7+11 q^{-1} -12 q^{-2} +14 q^{-3} -11 q^{-4} +9 q^{-5} -5 q^{-6} +2 q^{-7} (db)
Signature -2 (db)
HOMFLY-PT polynomial 2 a^6 z^2+a^6 z^{-2} +2 a^6-3 a^4 z^4-7 a^4 z^2-2 a^4 z^{-2} -6 a^4+a^2 z^6+3 a^2 z^4+5 a^2 z^2+a^2 z^{-2} +4 a^2-z^4-z^2 (db)
Kauffman polynomial 3 a^8 z^4-4 a^8 z^2+a^8+a^7 z^7+3 a^7 z^5-4 a^7 z^3+2 a^6 z^8+a^6 z^6-3 a^6 z^4+4 a^6 z^2+a^6 z^{-2} -3 a^6+a^5 z^9+5 a^5 z^7-5 a^5 z^5-4 a^5 z^3+6 a^5 z-2 a^5 z^{-1} +6 a^4 z^8-2 a^4 z^6-13 a^4 z^4+16 a^4 z^2+2 a^4 z^{-2} -8 a^4+a^3 z^9+10 a^3 z^7-19 a^3 z^5+4 a^3 z^3+6 a^3 z-2 a^3 z^{-1} +4 a^2 z^8+a^2 z^6-14 a^2 z^4+11 a^2 z^2+a^2 z^{-2} -5 a^2+6 a z^7-10 a z^5+z^5 a^{-1} +3 a z^3-z^3 a^{-1} +4 z^6-7 z^4+3 z^2 (db)

Khovanov Homology

The coefficients of the monomials t^rq^j are shown, along with their alternating sums \chi (fixed j, alternation over r).   
\ r
  \  
j \
-6-5-4-3-2-10123χ
5         1-1
3        3 3
1       41 -3
-1      73  4
-3     76   -1
-5    75    2
-7   58     3
-9  46      -2
-11 15       4
-1314        -3
-152         2
Integral Khovanov Homology

(db, data source)

  
\dim{\mathcal G}_{2r+i}\operatorname{KH}^r_{\mathbb Z} i=-3 i=-1
r=-6 {\mathbb Z}^{2} {\mathbb Z}
r=-5 {\mathbb Z}^{4}\oplus{\mathbb Z}_2 {\mathbb Z}
r=-4 {\mathbb Z}^{5}\oplus{\mathbb Z}_2^{4} {\mathbb Z}^{4}
r=-3 {\mathbb Z}^{6}\oplus{\mathbb Z}_2^{5} {\mathbb Z}^{5}
r=-2 {\mathbb Z}^{8}\oplus{\mathbb Z}_2^{6} {\mathbb Z}^{7}
r=-1 {\mathbb Z}^{5}\oplus{\mathbb Z}_2^{7} {\mathbb Z}^{7}
r=0 {\mathbb Z}^{6}\oplus{\mathbb Z}_2^{5} {\mathbb Z}^{7}
r=1 {\mathbb Z}^{3}\oplus{\mathbb Z}_2^{4} {\mathbb Z}^{4}
r=2 {\mathbb Z}\oplus{\mathbb Z}_2^{3} {\mathbb Z}^{3}
r=3 {\mathbb Z}_2 {\mathbb Z}

Computer Talk

Much of the above data can be recomputed by Mathematica using the package KnotTheory`. See A Sample KnotTheory` Session.

Modifying This Page

Read me first: Modifying Knot Pages

See/edit the Link Page master template (intermediate).

See/edit the Link_Splice_Base (expert).

Back to the top.

L11n316.gif

L11n316

L11n318.gif

L11n318