L11n32

From Knot Atlas
Jump to: navigation, search

L11n31.gif

L11n31

L11n33.gif

L11n33

Contents

L11n32.gif
(Knotscape image)
See the full Thistlethwaite Link Table (up to 11 crossings).

Visit L11n32 at Knotilus!


Link Presentations

[edit Notes on L11n32's Link Presentations]

Planar diagram presentation X6172 X20,7,21,8 X4,21,1,22 X9,14,10,15 X3849 X5,13,6,12 X13,5,14,22 X15,18,16,19 X11,17,12,16 X17,11,18,10 X19,2,20,3
Gauss code {1, 11, -5, -3}, {-6, -1, 2, 5, -4, 10, -9, 6, -7, 4, -8, 9, -10, 8, -11, -2, 3, 7}
A Braid Representative
BraidPart1.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart3.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gif
BraidPart2.gifBraidPart1.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart3.gifBraidPart4.gifBraidPart3.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart1.gifBraidPart0.gifBraidPart0.gif
BraidPart0.gifBraidPart2.gifBraidPart1.gifBraidPart0.gifBraidPart1.gifBraidPart4.gifBraidPart1.gifBraidPart4.gifBraidPart3.gifBraidPart0.gifBraidPart3.gifBraidPart0.gifBraidPart3.gifBraidPart2.gifBraidPart1.gifBraidPart0.gif
BraidPart0.gifBraidPart0.gifBraidPart2.gifBraidPart3.gifBraidPart2.gifBraidPart0.gifBraidPart2.gifBraidPart0.gifBraidPart4.gifBraidPart3.gifBraidPart4.gifBraidPart3.gifBraidPart4.gifBraidPart0.gifBraidPart2.gifBraidPart3.gif
BraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart4.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart4.gifBraidPart0.gifBraidPart4.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart4.gif
A Morse Link Presentation L11n32 ML.gif

Polynomial invariants

Multivariable Alexander Polynomial (in u, v, w, ...) -\frac{t(1) t(2)^5-4 t(1) t(2)^4+5 t(1) t(2)^3-t(2)^3-t(1) t(2)^2+5 t(2)^2-4 t(2)+1}{\sqrt{t(1)} t(2)^{5/2}} (db)
Jones polynomial -q^{5/2}+2 q^{3/2}-4 \sqrt{q}+\frac{6}{\sqrt{q}}-\frac{7}{q^{3/2}}+\frac{7}{q^{5/2}}-\frac{7}{q^{7/2}}+\frac{5}{q^{9/2}}-\frac{4}{q^{11/2}}+\frac{1}{q^{13/2}} (db)
Signature -3 (db)
HOMFLY-PT polynomial a^7 (-z)+a^5 z^5+4 a^5 z^3+4 a^5 z+2 a^5 z^{-1} -a^3 z^7-5 a^3 z^5-9 a^3 z^3-10 a^3 z-4 a^3 z^{-1} +2 a z^5+8 a z^3-z^3 a^{-1} +8 a z+3 a z^{-1} -3 z a^{-1} - a^{-1} z^{-1} (db)
Kauffman polynomial -a^3 z^9-a z^9-4 a^4 z^8-6 a^2 z^8-2 z^8-5 a^5 z^7-5 a^3 z^7-a z^7-z^7 a^{-1} -2 a^6 z^6+13 a^4 z^6+24 a^2 z^6+9 z^6+18 a^5 z^5+32 a^3 z^5+19 a z^5+5 z^5 a^{-1} +2 a^6 z^4-13 a^4 z^4-27 a^2 z^4-12 z^4-4 a^7 z^3-25 a^5 z^3-44 a^3 z^3-31 a z^3-8 z^3 a^{-1} -a^8 z^2-a^6 z^2+7 a^4 z^2+13 a^2 z^2+6 z^2+2 a^7 z+14 a^5 z+24 a^3 z+17 a z+5 z a^{-1} -a^6-2 a^4-3 a^2-1-2 a^5 z^{-1} -4 a^3 z^{-1} -3 a z^{-1} - a^{-1} z^{-1} (db)

Khovanov Homology

The coefficients of the monomials t^rq^j are shown, along with their alternating sums \chi (fixed j, alternation over r).   
\ r
  \  
j \
-5-4-3-2-101234χ
6         11
4        1 -1
2       31 2
0      31  -2
-2     43   1
-4    44    0
-6   33     0
-8  24      2
-10 23       -1
-12 3        3
-141         -1
Integral Khovanov Homology

(db, data source)

  
\dim{\mathcal G}_{2r+i}\operatorname{KH}^r_{\mathbb Z} i=-4 i=-2
r=-5 {\mathbb Z}
r=-4 {\mathbb Z}^{3}\oplus{\mathbb Z}_2 {\mathbb Z}^{2}
r=-3 {\mathbb Z}^{3}\oplus{\mathbb Z}_2^{2} {\mathbb Z}^{2}
r=-2 {\mathbb Z}^{4}\oplus{\mathbb Z}_2^{3} {\mathbb Z}^{3}
r=-1 {\mathbb Z}^{3}\oplus{\mathbb Z}_2^{4} {\mathbb Z}^{4}
r=0 {\mathbb Z}^{4}\oplus{\mathbb Z}_2^{3} {\mathbb Z}^{4}
r=1 {\mathbb Z}^{3}\oplus{\mathbb Z}_2^{3} {\mathbb Z}^{3}
r=2 {\mathbb Z}\oplus{\mathbb Z}_2^{3} {\mathbb Z}^{3}
r=3 {\mathbb Z}\oplus{\mathbb Z}_2 {\mathbb Z}
r=4 {\mathbb Z}_2 {\mathbb Z}

Computer Talk

Much of the above data can be recomputed by Mathematica using the package KnotTheory`. See A Sample KnotTheory` Session.

Modifying This Page

Read me first: Modifying Knot Pages

See/edit the Link Page master template (intermediate).

See/edit the Link_Splice_Base (expert).

Back to the top.

L11n31.gif

L11n31

L11n33.gif

L11n33