L11n336

From Knot Atlas
Jump to: navigation, search

L11n335.gif

L11n335

L11n337.gif

L11n337

Contents

L11n336.gif
(Knotscape image)
See the full Thistlethwaite Link Table (up to 11 crossings).

Visit L11n336 at Knotilus!


Link Presentations

[edit Notes on L11n336's Link Presentations]

Planar diagram presentation X6172 X16,12,17,11 X8493 X2,18,3,17 X14,6,15,5 X18,7,19,8 X12,16,5,15 X13,20,14,21 X9,13,10,22 X21,11,22,10 X4,19,1,20
Gauss code {1, -4, 3, -11}, {5, -1, 6, -3, -9, 10, 2, -7}, {-8, -5, 7, -2, 4, -6, 11, 8, -10, 9}
A Braid Representative
BraidPart1.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart3.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gif
BraidPart2.gifBraidPart1.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart3.gifBraidPart4.gifBraidPart3.gifBraidPart0.gifBraidPart3.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart3.gif
BraidPart0.gifBraidPart2.gifBraidPart1.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart1.gifBraidPart4.gifBraidPart1.gifBraidPart4.gifBraidPart1.gifBraidPart4.gifBraidPart3.gifBraidPart0.gifBraidPart1.gifBraidPart4.gif
BraidPart0.gifBraidPart0.gifBraidPart2.gifBraidPart1.gifBraidPart0.gifBraidPart1.gifBraidPart2.gifBraidPart0.gifBraidPart2.gifBraidPart0.gifBraidPart2.gifBraidPart1.gifBraidPart4.gifBraidPart3.gifBraidPart2.gifBraidPart0.gif
BraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart2.gifBraidPart1.gifBraidPart2.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart2.gifBraidPart3.gifBraidPart4.gifBraidPart0.gifBraidPart0.gif
BraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart2.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart4.gifBraidPart0.gifBraidPart0.gifBraidPart0.gif
A Morse Link Presentation L11n336 ML.gif

Polynomial invariants

Multivariable Alexander Polynomial (in u, v, w, ...) \frac{(u-1) (v-1) (w-1) \left(v^2+v w+w^2\right)}{\sqrt{u} v^{3/2} w^{3/2}} (db)
Jones polynomial -q^7+3 q^6-4 q^5+8 q^4-7 q^3+8 q^2+ q^{-2} -7 q-3 q^{-1} +6 (db)
Signature 0 (db)
HOMFLY-PT polynomial 2 z^4 a^{-2} +z^4 a^{-4} +4 z^2 a^{-2} -z^2 a^{-6} -3 z^2+a^2+3 a^{-2} -2 a^{-4} -2+ a^{-2} z^{-2} -2 a^{-4} z^{-2} + a^{-6} z^{-2} (db)
Kauffman polynomial 2 z^9 a^{-3} +2 z^9 a^{-5} +5 z^8 a^{-2} +8 z^8 a^{-4} +3 z^8 a^{-6} +5 z^7 a^{-1} -z^7 a^{-3} -5 z^7 a^{-5} +z^7 a^{-7} -17 z^6 a^{-2} -33 z^6 a^{-4} -14 z^6 a^{-6} +2 z^6-17 z^5 a^{-1} -16 z^5 a^{-3} -3 z^5 a^{-5} -4 z^5 a^{-7} +15 z^4 a^{-2} +39 z^4 a^{-4} +20 z^4 a^{-6} -4 z^4+3 a z^3+19 z^3 a^{-1} +18 z^3 a^{-3} +6 z^3 a^{-5} +4 z^3 a^{-7} +a^2 z^2-3 z^2 a^{-2} -17 z^2 a^{-4} -9 z^2 a^{-6} +6 z^2-2 a z-6 z a^{-1} -2 z a^{-3} +2 z a^{-5} -a^2- a^{-2} -2 a^{-4} -2 a^{-6} -1-2 a^{-3} z^{-1} -2 a^{-5} z^{-1} + a^{-2} z^{-2} +2 a^{-4} z^{-2} + a^{-6} z^{-2} (db)

Khovanov Homology

The coefficients of the monomials t^rq^j are shown, along with their alternating sums \chi (fixed j, alternation over r).   
\ r
  \  
j \
-2-101234567χ
15         1-1
13        2 2
11       21 -1
9      62  4
7     34   1
5    54    1
3  133     1
1  45      -1
-1 14       3
-3 2        -2
-51         1
Integral Khovanov Homology

(db, data source)

  
\dim{\mathcal G}_{2r+i}\operatorname{KH}^r_{\mathbb Z} i=-1 i=1 i=3
r=-2 {\mathbb Z}
r=-1 {\mathbb Z}^{2}\oplus{\mathbb Z}_2 {\mathbb Z}
r=0 {\mathbb Z}^{4}\oplus{\mathbb Z}_2^{2} {\mathbb Z}^{4} {\mathbb Z}
r=1 {\mathbb Z}^{5}\oplus{\mathbb Z}_2^{3} {\mathbb Z}^{3}
r=2 {\mathbb Z}^{3}\oplus{\mathbb Z}_2^{5} {\mathbb Z}^{5}
r=3 {\mathbb Z}^{4}\oplus{\mathbb Z}_2^{3} {\mathbb Z}^{3}
r=4 {\mathbb Z}^{4}\oplus{\mathbb Z}_2^{4} {\mathbb Z}^{6}
r=5 {\mathbb Z}^{2}\oplus{\mathbb Z}_2^{2} {\mathbb Z}^{2}
r=6 {\mathbb Z}\oplus{\mathbb Z}_2^{2} {\mathbb Z}^{2}
r=7 {\mathbb Z}_2 {\mathbb Z}

Computer Talk

Much of the above data can be recomputed by Mathematica using the package KnotTheory`. See A Sample KnotTheory` Session.

Modifying This Page

Read me first: Modifying Knot Pages

See/edit the Link Page master template (intermediate).

See/edit the Link_Splice_Base (expert).

Back to the top.

L11n335.gif

L11n335

L11n337.gif

L11n337