L11n337

From Knot Atlas
Jump to: navigation, search

L11n336.gif

L11n336

L11n338.gif

L11n338

Contents

L11n337.gif
(Knotscape image)
See the full Thistlethwaite Link Table (up to 11 crossings).

Visit L11n337 at Knotilus!


Link Presentations

[edit Notes on L11n337's Link Presentations]

Planar diagram presentation X6172 X10,3,11,4 X11,18,12,19 X7,14,8,15 X13,8,14,9 X19,22,20,13 X15,20,16,21 X21,16,22,17 X17,12,18,5 X2536 X4,9,1,10
Gauss code {1, -10, 2, -11}, {10, -1, -4, 5, 11, -2, -3, 9}, {-5, 4, -7, 8, -9, 3, -6, 7, -8, 6}
A Braid Representative
BraidPart1.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart3.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gif
BraidPart2.gifBraidPart3.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart1.gifBraidPart4.gifBraidPart3.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart1.gifBraidPart0.gifBraidPart0.gif
BraidPart0.gifBraidPart4.gifBraidPart3.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart3.gifBraidPart2.gifBraidPart3.gifBraidPart4.gifBraidPart3.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart3.gifBraidPart2.gifBraidPart3.gifBraidPart3.gif
BraidPart0.gifBraidPart0.gifBraidPart4.gifBraidPart3.gifBraidPart0.gifBraidPart3.gifBraidPart4.gifBraidPart0.gifBraidPart4.gifBraidPart0.gifBraidPart4.gifBraidPart3.gifBraidPart0.gifBraidPart3.gifBraidPart4.gifBraidPart0.gifBraidPart4.gifBraidPart4.gif
BraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart4.gifBraidPart3.gifBraidPart4.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart4.gifBraidPart1.gifBraidPart4.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gif
BraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart4.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart2.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gif
A Morse Link Presentation L11n337 ML.gif

Polynomial invariants

Multivariable Alexander Polynomial (in u, v, w, ...) \frac{(t(2)-1) \left(t(1) t(3)^3+t(1) t(2) t(3)^3+2 t(2)^2 t(3)^2-2 t(1) t(3)^2-2 t(2)^2 t(3)+2 t(1) t(3)+t(2)^2+t(2)\right)}{\sqrt{t(1)} t(2)^{3/2} t(3)^{3/2}} (db)
Jones polynomial - q^{-13} +2 q^{-12} -4 q^{-11} +6 q^{-10} -5 q^{-9} +6 q^{-8} -4 q^{-7} +4 q^{-6} - q^{-5} + q^{-3} (db)
Signature -4 (db)
HOMFLY-PT polynomial -a^{14} z^{-2} +4 a^{12} z^{-2} +4 a^{12}-5 a^{10} z^2-5 a^{10} z^{-2} -9 a^{10}+a^8 z^4+a^8 z^2+2 a^8 z^{-2} +2 a^8+a^6 z^6+6 a^6 z^4+8 a^6 z^2+3 a^6 (db)
Kauffman polynomial a^{15} z^7-5 a^{15} z^5+8 a^{15} z^3-5 a^{15} z+a^{15} z^{-1} +2 a^{14} z^8-9 a^{14} z^6+12 a^{14} z^4-8 a^{14} z^2-a^{14} z^{-2} +4 a^{14}+a^{13} z^9+a^{13} z^7-21 a^{13} z^5+36 a^{13} z^3-23 a^{13} z+5 a^{13} z^{-1} +6 a^{12} z^8-28 a^{12} z^6+41 a^{12} z^4-34 a^{12} z^2-4 a^{12} z^{-2} +18 a^{12}+a^{11} z^9+3 a^{11} z^7-32 a^{11} z^5+57 a^{11} z^3-39 a^{11} z+9 a^{11} z^{-1} +4 a^{10} z^8-21 a^{10} z^6+38 a^{10} z^4-37 a^{10} z^2-5 a^{10} z^{-2} +21 a^{10}+3 a^9 z^7-17 a^9 z^5+30 a^9 z^3-20 a^9 z+5 a^9 z^{-1} -a^8 z^6+3 a^8 z^4-3 a^8 z^2-2 a^8 z^{-2} +5 a^8-a^7 z^5+a^7 z^3+a^7 z+a^6 z^6-6 a^6 z^4+8 a^6 z^2-3 a^6 (db)

Khovanov Homology

The coefficients of the monomials t^rq^j are shown, along with their alternating sums \chi (fixed j, alternation over r).   
\ r
  \  
j \
-11-10-9-8-7-6-5-4-3-2-10χ
-5           11
-7           11
-9        21  -1
-11       3    3
-13      451   0
-15     31     2
-17    241     1
-19   43       1
-21  13        2
-23 13         -2
-25 1          1
-271           -1
Integral Khovanov Homology

(db, data source)

  
\dim{\mathcal G}_{2r+i}\operatorname{KH}^r_{\mathbb Z} i=-7 i=-5 i=-3
r=-11 {\mathbb Z}
r=-10 {\mathbb Z}\oplus{\mathbb Z}_2 {\mathbb Z}
r=-9 {\mathbb Z}^{3}\oplus{\mathbb Z}_2 {\mathbb Z}
r=-8 {\mathbb Z}^{3}\oplus{\mathbb Z}_2^{3} {\mathbb Z}^{4}
r=-7 {\mathbb Z}^{3}\oplus{\mathbb Z}_2^{2} {\mathbb Z}^{2}
r=-6 {\mathbb Z}^{4}\oplus{\mathbb Z}_2^{3} {\mathbb Z}^{3}
r=-5 {\mathbb Z} {\mathbb Z}\oplus{\mathbb Z}_2^{4} {\mathbb Z}^{4}
r=-4 {\mathbb Z}_2 {\mathbb Z}^{5}\oplus{\mathbb Z}_2 {\mathbb Z}^{3}
r=-3 {\mathbb Z} {\mathbb Z}_2^{2} {\mathbb Z}^{2}
r=-2 {\mathbb Z}_2 {\mathbb Z}
r=-1
r=0 {\mathbb Z} {\mathbb Z}

Computer Talk

Much of the above data can be recomputed by Mathematica using the package KnotTheory`. See A Sample KnotTheory` Session.

Modifying This Page

Read me first: Modifying Knot Pages

See/edit the Link Page master template (intermediate).

See/edit the Link_Splice_Base (expert).

Back to the top.

L11n336.gif

L11n336

L11n338.gif

L11n338