From Knot Atlas
Jump to: navigation, search






(Knotscape image)
See the full Thistlethwaite Link Table (up to 11 crossings).

Visit L11n34 at Knotilus!

Link Presentations

[edit Notes on L11n34's Link Presentations]

Planar diagram presentation X6172 X20,7,21,8 X4,21,1,22 X14,10,15,9 X8493 X5,13,6,12 X13,5,14,22 X18,16,19,15 X16,11,17,12 X10,17,11,18 X2,20,3,19
Gauss code {1, -11, 5, -3}, {-6, -1, 2, -5, 4, -10, 9, 6, -7, -4, 8, -9, 10, -8, 11, -2, 3, 7}
A Braid Representative
A Morse Link Presentation L11n34 ML.gif

Polynomial invariants

Multivariable Alexander Polynomial (in u, v, w, ...) -\frac{(t(1)-1) (t(2)-1) \left(t(2)^4-3 t(2)^3+3 t(2)^2-3 t(2)+1\right)}{\sqrt{t(1)} t(2)^{5/2}} (db)
Jones polynomial -3 q^{9/2}+\frac{1}{q^{9/2}}+7 q^{7/2}-\frac{4}{q^{7/2}}-11 q^{5/2}+\frac{7}{q^{5/2}}+14 q^{3/2}-\frac{12}{q^{3/2}}-15 \sqrt{q}+\frac{14}{\sqrt{q}} (db)
Signature 1 (db)
HOMFLY-PT polynomial -z a^{-5} - a^{-5} z^{-1} +z^5 a^{-3} -a^3 z^3+3 z^3 a^{-3} -a^3 z+4 z a^{-3} +a^3 z^{-1} +2 a^{-3} z^{-1} -z^7 a^{-1} +2 a z^5-4 z^5 a^{-1} +5 a z^3-6 z^3 a^{-1} +2 a z-4 z a^{-1} -a z^{-1} - a^{-1} z^{-1} (db)
Kauffman polynomial 6 z^3 a^{-5} -5 z a^{-5} + a^{-5} z^{-1} +a^4 z^6+3 z^6 a^{-4} -2 a^4 z^4+3 z^4 a^{-4} +a^4 z^2-3 z^2 a^{-4} + a^{-4} +4 a^3 z^7+8 z^7 a^{-3} -11 a^3 z^5-16 z^5 a^{-3} +9 a^3 z^3+24 z^3 a^{-3} -a^3 z-15 z a^{-3} -a^3 z^{-1} +2 a^{-3} z^{-1} +5 a^2 z^8+7 z^8 a^{-2} -10 a^2 z^6-10 z^6 a^{-2} +2 a^2 z^4+8 z^4 a^{-2} +a^2 z^2-6 z^2 a^{-2} +a^2+3 a^{-2} +2 a z^9+2 z^9 a^{-1} +9 a z^7+13 z^7 a^{-1} -35 a z^5-40 z^5 a^{-1} +27 a z^3+36 z^3 a^{-1} -5 a z-14 z a^{-1} -a z^{-1} + a^{-1} z^{-1} +12 z^8-24 z^6+9 z^4-3 z^2+2 (db)

Khovanov Homology

The coefficients of the monomials t^rq^j are shown, along with their alternating sums \chi (fixed j, alternation over r).   
\ r
j \
10         33
8        4 -4
6       73 4
4      74  -3
2     87   1
0    89    1
-2   46     -2
-4  38      5
-6 14       -3
-8 3        3
-101         -1
Integral Khovanov Homology

(db, data source)

\dim{\mathcal G}_{2r+i}\operatorname{KH}^r_{\mathbb Z} i=0 i=2
r=-5 {\mathbb Z}
r=-4 {\mathbb Z}^{3}\oplus{\mathbb Z}_2 {\mathbb Z}
r=-3 {\mathbb Z}^{4}\oplus{\mathbb Z}_2^{3} {\mathbb Z}^{3}
r=-2 {\mathbb Z}^{8}\oplus{\mathbb Z}_2^{4} {\mathbb Z}^{4}
r=-1 {\mathbb Z}^{6}\oplus{\mathbb Z}_2^{8} {\mathbb Z}^{8}
r=0 {\mathbb Z}^{9}\oplus{\mathbb Z}_2^{6} {\mathbb Z}^{8}
r=1 {\mathbb Z}^{7}\oplus{\mathbb Z}_2^{7} {\mathbb Z}^{7}
r=2 {\mathbb Z}^{4}\oplus{\mathbb Z}_2^{7} {\mathbb Z}^{7}
r=3 {\mathbb Z}^{3}\oplus{\mathbb Z}_2^{4} {\mathbb Z}^{4}
r=4 {\mathbb Z}_2^{3} {\mathbb Z}^{3}

Computer Talk

Much of the above data can be recomputed by Mathematica using the package KnotTheory`. See A Sample KnotTheory` Session.

Modifying This Page

Read me first: Modifying Knot Pages

See/edit the Link Page master template (intermediate).

See/edit the Link_Splice_Base (expert).

Back to the top.