L11n347

From Knot Atlas
Jump to: navigation, search

L11n346.gif

L11n346

L11n348.gif

L11n348

Contents

L11n347.gif
(Knotscape image)
See the full Thistlethwaite Link Table (up to 11 crossings).

Visit L11n347 at Knotilus!


Link Presentations

[edit Notes on L11n347's Link Presentations]

Planar diagram presentation X6172 X3,15,4,14 X11,20,12,21 X7,18,8,19 X17,22,18,13 X16,9,17,10 X10,15,11,16 X19,12,20,5 X21,8,22,9 X2536 X13,1,14,4
Gauss code {1, -10, -2, 11}, {10, -1, -4, 9, 6, -7, -3, 8}, {-11, 2, 7, -6, -5, 4, -8, 3, -9, 5}
A Braid Representative
BraidPart1.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart3.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gif
BraidPart2.gifBraidPart3.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart3.gifBraidPart4.gifBraidPart3.gifBraidPart0.gifBraidPart3.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart3.gif
BraidPart0.gifBraidPart4.gifBraidPart3.gifBraidPart0.gifBraidPart1.gifBraidPart0.gifBraidPart3.gifBraidPart4.gifBraidPart0.gifBraidPart4.gifBraidPart3.gifBraidPart4.gifBraidPart1.gifBraidPart0.gifBraidPart3.gifBraidPart4.gif
BraidPart0.gifBraidPart0.gifBraidPart4.gifBraidPart3.gifBraidPart2.gifBraidPart3.gifBraidPart4.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart4.gifBraidPart1.gifBraidPart2.gifBraidPart1.gifBraidPart4.gifBraidPart0.gif
BraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart4.gifBraidPart3.gifBraidPart4.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart2.gifBraidPart1.gifBraidPart2.gifBraidPart0.gifBraidPart0.gif
BraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart4.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart2.gifBraidPart0.gifBraidPart0.gifBraidPart0.gif
A Morse Link Presentation L11n347 ML.gif

Polynomial invariants

Multivariable Alexander Polynomial (in u, v, w, ...) -\frac{u v^2 w^3-u v^2 w^2+u v^2 w-u v^2-u v w+u v+u w^2+v^3 (-w)-v^2 w^3+v^2 w^2+v w^3-v w^2+v w-v}{\sqrt{u} v^{3/2} w^{3/2}} (db)
Jones polynomial 1-2 q^{-1} +4 q^{-2} -3 q^{-3} +4 q^{-4} -3 q^{-5} +3 q^{-6} - q^{-7} + q^{-9} (db)
Signature -4 (db)
HOMFLY-PT polynomial a^8 z^2+a^8 z^{-2} +2 a^8-2 a^6 z^2-2 a^6 z^{-2} -5 a^6-a^4 z^6-4 a^4 z^4-3 a^4 z^2+a^4 z^{-2} +a^4+a^2 z^4+3 a^2 z^2+2 a^2 (db)
Kauffman polynomial a^{10} z^6-6 a^{10} z^4+8 a^{10} z^2-2 a^{10}-a^9 z^5+2 a^9 z^3+a^9 z-a^8 z^6+4 a^8 z^4-3 a^8 z^2-a^8 z^{-2} +3 a^8+a^7 z^7-5 a^7 z^5+10 a^7 z^3-8 a^7 z+2 a^7 z^{-1} +a^6 z^8-4 a^6 z^6+8 a^6 z^4-13 a^6 z^2-2 a^6 z^{-2} +9 a^6+3 a^5 z^7-11 a^5 z^5+12 a^5 z^3-8 a^5 z+2 a^5 z^{-1} +a^4 z^8-a^4 z^6-6 a^4 z^4+3 a^4 z^2-a^4 z^{-2} +3 a^4+2 a^3 z^7-7 a^3 z^5+4 a^3 z^3+a^3 z+a^2 z^6-4 a^2 z^4+5 a^2 z^2-2 a^2 (db)

Khovanov Homology

The coefficients of the monomials t^rq^j are shown, along with their alternating sums \chi (fixed j, alternation over r).   
\ r
  \  
j \
-8-7-6-5-4-3-2-1012χ
1          11
-1         1 -1
-3        31 2
-5       23  1
-7     131   1
-9     12    1
-11   143     0
-13    2      2
-15  12       -1
-171          1
-191          1
Integral Khovanov Homology

(db, data source)

  
\dim{\mathcal G}_{2r+i}\operatorname{KH}^r_{\mathbb Z} i=-5 i=-3 i=-1
r=-8 {\mathbb Z} {\mathbb Z}
r=-7
r=-6 {\mathbb Z}
r=-5 {\mathbb Z}^{2} {\mathbb Z}_2 {\mathbb Z}
r=-4 {\mathbb Z}^{2}\oplus{\mathbb Z}_2^{2} {\mathbb Z}^{4}
r=-3 {\mathbb Z}^{3}\oplus{\mathbb Z}_2 {\mathbb Z}\oplus{\mathbb Z}_2 {\mathbb Z}
r=-2 {\mathbb Z}^{2}\oplus{\mathbb Z}_2^{3} {\mathbb Z}^{3}
r=-1 {\mathbb Z}\oplus{\mathbb Z}_2^{2} {\mathbb Z}^{2}
r=0 {\mathbb Z}^{3}\oplus{\mathbb Z}_2 {\mathbb Z}^{3}
r=1 {\mathbb Z}\oplus{\mathbb Z}_2 {\mathbb Z}
r=2 {\mathbb Z}_2 {\mathbb Z}

Computer Talk

Much of the above data can be recomputed by Mathematica using the package KnotTheory`. See A Sample KnotTheory` Session.

Modifying This Page

Read me first: Modifying Knot Pages

See/edit the Link Page master template (intermediate).

See/edit the Link_Splice_Base (expert).

Back to the top.

L11n346.gif

L11n346

L11n348.gif

L11n348