L11n349

From Knot Atlas
Jump to: navigation, search

L11n348.gif

L11n348

L11n350.gif

L11n350

Contents

L11n349.gif
(Knotscape image)
See the full Thistlethwaite Link Table (up to 11 crossings).

Visit L11n349 at Knotilus!


Link Presentations

[edit Notes on L11n349's Link Presentations]

Planar diagram presentation X6172 X14,3,15,4 X20,12,21,11 X18,8,19,7 X22,18,13,17 X9,17,10,16 X15,11,16,10 X12,20,5,19 X8,22,9,21 X2536 X4,13,1,14
Gauss code {1, -10, 2, -11}, {10, -1, 4, -9, -6, 7, 3, -8}, {11, -2, -7, 6, 5, -4, 8, -3, 9, -5}
A Braid Representative
BraidPart1.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart3.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gif
BraidPart2.gifBraidPart1.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart1.gifBraidPart4.gifBraidPart1.gifBraidPart0.gifBraidPart1.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart1.gif
BraidPart0.gifBraidPart2.gifBraidPart3.gifBraidPart0.gifBraidPart3.gifBraidPart0.gifBraidPart1.gifBraidPart2.gifBraidPart0.gifBraidPart2.gifBraidPart1.gifBraidPart2.gifBraidPart3.gifBraidPart0.gifBraidPart3.gifBraidPart2.gif
BraidPart0.gifBraidPart0.gifBraidPart4.gifBraidPart3.gifBraidPart4.gifBraidPart3.gifBraidPart2.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart2.gifBraidPart1.gifBraidPart4.gifBraidPart1.gifBraidPart4.gifBraidPart0.gif
BraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart4.gifBraidPart3.gifBraidPart4.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart2.gifBraidPart1.gifBraidPart2.gifBraidPart0.gifBraidPart0.gif
BraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart4.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart2.gifBraidPart0.gifBraidPart0.gifBraidPart0.gif
A Morse Link Presentation L11n349 ML.gif

Polynomial invariants

Multivariable Alexander Polynomial (in u, v, w, ...) \frac{u v^2 w^3-2 u v^2 w^2+2 u v^2 w-u v^2-u v w^3+2 u v w^2-3 u v w+2 u v+u w+v^3 \left(-w^2\right)-2 v^2 w^3+3 v^2 w^2-2 v^2 w+v^2+v w^3-2 v w^2+2 v w-v}{\sqrt{u} v^{3/2} w^{3/2}} (db)
Jones polynomial -q^6+5 q^5-7 q^4+10 q^3+ q^{-3} -10 q^2-2 q^{-2} +10 q+6 q^{-1} -8 (db)
Signature 2 (db)
HOMFLY-PT polynomial z^6 a^{-2} +2 z^4 a^{-2} -z^4 a^{-4} -2 z^4+a^2 z^2-2 z^2 a^{-2} -4 z^2+2 a^2-5 a^{-2} +3 a^{-4} -2 a^{-2} z^{-2} + a^{-4} z^{-2} + z^{-2} (db)
Kauffman polynomial z^3 a^{-7} +5 z^4 a^{-6} -z^2 a^{-6} -2 a^{-6} +2 z^7 a^{-5} +z^3 a^{-5} +z a^{-5} +3 z^8 a^{-4} -5 z^6 a^{-4} +8 z^4 a^{-4} -6 z^2 a^{-4} - a^{-4} z^{-2} +3 a^{-4} +z^9 a^{-3} +5 z^7 a^{-3} -15 z^5 a^{-3} +15 z^3 a^{-3} -8 z a^{-3} +2 a^{-3} z^{-1} +6 z^8 a^{-2} +a^2 z^6-14 z^6 a^{-2} -4 a^2 z^4+14 z^4 a^{-2} +5 a^2 z^2-16 z^2 a^{-2} -2 a^{-2} z^{-2} -2 a^2+9 a^{-2} +z^9 a^{-1} +2 a z^7+5 z^7 a^{-1} -5 a z^5-20 z^5 a^{-1} +2 a z^3+17 z^3 a^{-1} +a z-8 z a^{-1} +2 a^{-1} z^{-1} +3 z^8-8 z^6+7 z^4-6 z^2- z^{-2} +3 (db)

Khovanov Homology

The coefficients of the monomials t^rq^j are shown, along with their alternating sums \chi (fixed j, alternation over r).   
\ r
  \  
j \
-4-3-2-1012345χ
13         1-1
11        4 4
9       53 -2
7      52  3
5     55   0
3    55    0
1   46     2
-1  24      -2
-3  4       4
-512        -1
-71         1
Integral Khovanov Homology

(db, data source)

  
\dim{\mathcal G}_{2r+i}\operatorname{KH}^r_{\mathbb Z} i=1 i=3
r=-4 {\mathbb Z} {\mathbb Z}
r=-3 {\mathbb Z}^{2}
r=-2 {\mathbb Z}^{4}\oplus{\mathbb Z}_2^{2} {\mathbb Z}^{2}
r=-1 {\mathbb Z}^{4}\oplus{\mathbb Z}_2^{4} {\mathbb Z}^{4}
r=0 {\mathbb Z}^{6}\oplus{\mathbb Z}_2^{4} {\mathbb Z}^{5}
r=1 {\mathbb Z}^{5}\oplus{\mathbb Z}_2^{5} {\mathbb Z}^{5}
r=2 {\mathbb Z}^{5}\oplus{\mathbb Z}_2^{5} {\mathbb Z}^{5}
r=3 {\mathbb Z}^{2}\oplus{\mathbb Z}_2^{5} {\mathbb Z}^{5}
r=4 {\mathbb Z}^{3}\oplus{\mathbb Z}_2^{2} {\mathbb Z}^{4}
r=5 {\mathbb Z}_2 {\mathbb Z}

Computer Talk

Much of the above data can be recomputed by Mathematica using the package KnotTheory`. See A Sample KnotTheory` Session.

Modifying This Page

Read me first: Modifying Knot Pages

See/edit the Link Page master template (intermediate).

See/edit the Link_Splice_Base (expert).

Back to the top.

L11n348.gif

L11n348

L11n350.gif

L11n350