L11n361

From Knot Atlas
Jump to: navigation, search

L11n360.gif

L11n360

L11n362.gif

L11n362

Contents

L11n361.gif
(Knotscape image)
See the full Thistlethwaite Link Table (up to 11 crossings).

Visit L11n361 at Knotilus!


Link Presentations

[edit Notes on L11n361's Link Presentations]

Planar diagram presentation X6172 X12,7,13,8 X4,13,1,14 X5,18,6,19 X8493 X20,9,21,10 X10,19,11,20 X17,14,18,15 X15,22,16,17 X21,16,22,5 X2,12,3,11
Gauss code {1, -11, 5, -3}, {-8, 4, 7, -6, -10, 9}, {-4, -1, 2, -5, 6, -7, 11, -2, 3, 8, -9, 10}
A Braid Representative
BraidPart1.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart3.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gif
BraidPart2.gifBraidPart1.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart3.gifBraidPart4.gifBraidPart3.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart3.gifBraidPart0.gifBraidPart3.gifBraidPart0.gifBraidPart0.gifBraidPart0.gif
BraidPart0.gifBraidPart2.gifBraidPart3.gifBraidPart0.gifBraidPart3.gifBraidPart4.gifBraidPart0.gifBraidPart4.gifBraidPart3.gifBraidPart0.gifBraidPart3.gifBraidPart4.gifBraidPart1.gifBraidPart4.gifBraidPart1.gifBraidPart0.gifBraidPart0.gif
BraidPart0.gifBraidPart0.gifBraidPart4.gifBraidPart3.gifBraidPart4.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart4.gifBraidPart1.gifBraidPart4.gifBraidPart3.gifBraidPart2.gifBraidPart0.gifBraidPart2.gifBraidPart3.gifBraidPart0.gif
BraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart4.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart2.gifBraidPart1.gifBraidPart4.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart4.gifBraidPart3.gif
BraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart2.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart4.gif
A Morse Link Presentation L11n361 ML.gif

Polynomial invariants

Multivariable Alexander Polynomial (in u, v, w, ...) -\frac{(u-1) (w-1)^2 \left(v^2+v w+w^2\right)}{\sqrt{u} v w^2} (db)
Jones polynomial - q^{-10} +3 q^{-9} -4 q^{-8} +7 q^{-7} -7 q^{-6} +8 q^{-5} -7 q^{-4} +6 q^{-3} -3 q^{-2} +2 q^{-1} (db)
Signature -2 (db)
HOMFLY-PT polynomial -a^{10}+3 a^8 z^2+a^8 z^{-2} +4 a^8-2 a^6 z^4-5 a^6 z^2-2 a^6 z^{-2} -6 a^6-a^4 z^4+a^4 z^{-2} +a^4+2 a^2 z^2+2 a^2 (db)
Kauffman polynomial z^7 a^{11}-4 z^5 a^{11}+4 z^3 a^{11}-z a^{11}+3 z^8 a^{10}-14 z^6 a^{10}+19 z^4 a^{10}-8 z^2 a^{10}+2 z^9 a^9-5 z^7 a^9-5 z^5 a^9+12 z^3 a^9-2 z a^9+8 z^8 a^8-35 z^6 a^8+47 z^4 a^8-27 z^2 a^8-a^8 z^{-2} +7 a^8+2 z^9 a^7-2 z^7 a^7-12 z^5 a^7+17 z^3 a^7-9 z a^7+2 a^7 z^{-1} +5 z^8 a^6-19 z^6 a^6+28 z^4 a^6-25 z^2 a^6-2 a^6 z^{-2} +11 a^6+4 z^7 a^5-10 z^5 a^5+10 z^3 a^5-7 z a^5+2 a^5 z^{-1} +2 z^6 a^4-3 z^2 a^4-a^4 z^{-2} +3 a^4+z^5 a^3+z^3 a^3+z a^3+3 z^2 a^2-2 a^2 (db)

Khovanov Homology

The coefficients of the monomials t^rq^j are shown, along with their alternating sums \chi (fixed j, alternation over r).   
\ r
  \  
j \
-9-8-7-6-5-4-3-2-10χ
-1         22
-3        32-1
-5       3  3
-7      43  -1
-9     43   1
-11    34    1
-13   44     0
-15  25      3
-17 12       -1
-19 2        2
-211         -1
Integral Khovanov Homology

(db, data source)

  
\dim{\mathcal G}_{2r+i}\operatorname{KH}^r_{\mathbb Z} i=-3 i=-1
r=-9 {\mathbb Z}
r=-8 {\mathbb Z}^{2}\oplus{\mathbb Z}_2 {\mathbb Z}
r=-7 {\mathbb Z}^{2}\oplus{\mathbb Z}_2^{2} {\mathbb Z}^{2}
r=-6 {\mathbb Z}^{5}\oplus{\mathbb Z}_2^{2} {\mathbb Z}^{4}
r=-5 {\mathbb Z}^{4}\oplus{\mathbb Z}_2^{3} {\mathbb Z}^{3}
r=-4 {\mathbb Z}^{4}\oplus{\mathbb Z}_2^{4} {\mathbb Z}^{4}
r=-3 {\mathbb Z}^{3}\oplus{\mathbb Z}_2^{4} {\mathbb Z}^{4}
r=-2 {\mathbb Z}^{3}\oplus{\mathbb Z}_2^{3} {\mathbb Z}^{3}
r=-1 {\mathbb Z}_2^{3} {\mathbb Z}^{3}
r=0 {\mathbb Z}^{2} {\mathbb Z}^{2}

Computer Talk

Much of the above data can be recomputed by Mathematica using the package KnotTheory`. See A Sample KnotTheory` Session.

Modifying This Page

Read me first: Modifying Knot Pages

See/edit the Link Page master template (intermediate).

See/edit the Link_Splice_Base (expert).

Back to the top.

L11n360.gif

L11n360

L11n362.gif

L11n362