L11n362

From Knot Atlas
Jump to: navigation, search

L11n361.gif

L11n361

L11n363.gif

L11n363

Contents

L11n362.gif
(Knotscape image)
See the full Thistlethwaite Link Table (up to 11 crossings).

Visit L11n362 at Knotilus!


Link Presentations

[edit Notes on L11n362's Link Presentations]

Planar diagram presentation X6172 X12,7,13,8 X4,13,1,14 X18,6,19,5 X8493 X9,21,10,20 X19,11,20,10 X14,18,15,17 X22,16,17,15 X16,22,5,21 X2,12,3,11
Gauss code {1, -11, 5, -3}, {8, -4, -7, 6, 10, -9}, {4, -1, 2, -5, -6, 7, 11, -2, 3, -8, 9, -10}
A Braid Representative
BraidPart1.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart3.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gif
BraidPart2.gifBraidPart1.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart3.gifBraidPart4.gifBraidPart3.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart3.gifBraidPart0.gifBraidPart3.gifBraidPart0.gifBraidPart0.gifBraidPart0.gif
BraidPart0.gifBraidPart2.gifBraidPart1.gifBraidPart0.gifBraidPart1.gifBraidPart4.gifBraidPart0.gifBraidPart4.gifBraidPart1.gifBraidPart0.gifBraidPart1.gifBraidPart4.gifBraidPart1.gifBraidPart4.gifBraidPart1.gifBraidPart0.gifBraidPart0.gif
BraidPart0.gifBraidPart0.gifBraidPart2.gifBraidPart3.gifBraidPart2.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart2.gifBraidPart1.gifBraidPart2.gifBraidPart1.gifBraidPart2.gifBraidPart0.gifBraidPart2.gifBraidPart1.gifBraidPart0.gif
BraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart4.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart2.gifBraidPart1.gifBraidPart2.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart2.gifBraidPart3.gif
BraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart2.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart4.gif
A Morse Link Presentation L11n362 ML.gif

Polynomial invariants

Multivariable Alexander Polynomial (in u, v, w, ...) \frac{(t(1)-1) (t(3)-1)^2 \left(t(3) t(2)^2+t(3)^2 t(2)-t(3) t(2)+t(2)+t(3)\right)}{\sqrt{t(1)} t(2) t(3)^2} (db)
Jones polynomial 3 q^7-5 q^6+10 q^5-12 q^4+14 q^3-13 q^2- q^{-2} +11 q+4 q^{-1} -7 (db)
Signature 2 (db)
HOMFLY-PT polynomial z^6 a^{-2} +z^6 a^{-4} +2 z^4 a^{-2} +3 z^4 a^{-4} -z^4 a^{-6} -z^4+4 z^2 a^{-4} -3 z^2 a^{-6} -z^2- a^{-2} +3 a^{-4} -4 a^{-6} + a^{-8} +1+ a^{-4} z^{-2} -2 a^{-6} z^{-2} + a^{-8} z^{-2} (db)
Kauffman polynomial 6 z^4 a^{-8} -14 z^2 a^{-8} - a^{-8} z^{-2} +8 a^{-8} +3 z^7 a^{-7} -6 z^5 a^{-7} +10 z^3 a^{-7} -10 z a^{-7} +2 a^{-7} z^{-1} +5 z^8 a^{-6} -16 z^6 a^{-6} +33 z^4 a^{-6} -33 z^2 a^{-6} -2 a^{-6} z^{-2} +15 a^{-6} +2 z^9 a^{-5} +3 z^7 a^{-5} -13 z^5 a^{-5} +20 z^3 a^{-5} -12 z a^{-5} +2 a^{-5} z^{-1} +10 z^8 a^{-4} -25 z^6 a^{-4} +33 z^4 a^{-4} -24 z^2 a^{-4} - a^{-4} z^{-2} +9 a^{-4} +2 z^9 a^{-3} +6 z^7 a^{-3} -18 z^5 a^{-3} +14 z^3 a^{-3} -3 z a^{-3} +5 z^8 a^{-2} -5 z^6 a^{-2} -z^4 a^{-2} -3 z^2 a^{-2} +2 a^{-2} +6 z^7 a^{-1} +a z^5-10 z^5 a^{-1} -a z^3+3 z^3 a^{-1} -z a^{-1} +4 z^6-7 z^4+2 z^2+1 (db)

Khovanov Homology

The coefficients of the monomials t^rq^j are shown, along with their alternating sums \chi (fixed j, alternation over r).   
\ r
  \  
j \
-3-2-10123456χ
15         33
13        42-2
11       61 5
9      64  -2
7     86   2
5    56    1
3   68     -2
1  37      4
-1 14       -3
-3 3        3
-51         -1
Integral Khovanov Homology

(db, data source)

  
\dim{\mathcal G}_{2r+i}\operatorname{KH}^r_{\mathbb Z} i=1 i=3
r=-3 {\mathbb Z}
r=-2 {\mathbb Z}^{3}\oplus{\mathbb Z}_2 {\mathbb Z}
r=-1 {\mathbb Z}^{4}\oplus{\mathbb Z}_2^{3} {\mathbb Z}^{3}
r=0 {\mathbb Z}^{7}\oplus{\mathbb Z}_2^{4} {\mathbb Z}^{6}
r=1 {\mathbb Z}^{8}\oplus{\mathbb Z}_2^{5} {\mathbb Z}^{5}
r=2 {\mathbb Z}^{6}\oplus{\mathbb Z}_2^{8} {\mathbb Z}^{8}
r=3 {\mathbb Z}^{6}\oplus{\mathbb Z}_2^{6} {\mathbb Z}^{6}
r=4 {\mathbb Z}^{4}\oplus{\mathbb Z}_2^{6} {\mathbb Z}^{6}
r=5 {\mathbb Z}\oplus{\mathbb Z}_2^{4} {\mathbb Z}^{4}
r=6 {\mathbb Z}^{2}\oplus{\mathbb Z}_2 {\mathbb Z}^{3}

Computer Talk

Much of the above data can be recomputed by Mathematica using the package KnotTheory`. See A Sample KnotTheory` Session.

Modifying This Page

Read me first: Modifying Knot Pages

See/edit the Link Page master template (intermediate).

See/edit the Link_Splice_Base (expert).

Back to the top.

L11n361.gif

L11n361

L11n363.gif

L11n363