L11n368

From Knot Atlas
Jump to: navigation, search

L11n367.gif

L11n367

L11n369.gif

L11n369

Contents

L11n368.gif
(Knotscape image)
See the full Thistlethwaite Link Table (up to 11 crossings).

Visit L11n368 at Knotilus!


Link Presentations

[edit Notes on L11n368's Link Presentations]

Planar diagram presentation X6172 X10,3,11,4 X7,14,8,15 X15,20,16,21 X11,19,12,18 X17,13,18,12 X19,22,20,17 X21,16,22,5 X13,8,14,9 X2536 X4,9,1,10
Gauss code {1, -10, 2, -11}, {-6, 5, -7, 4, -8, 7}, {10, -1, -3, 9, 11, -2, -5, 6, -9, 3, -4, 8}
A Braid Representative
BraidPart1.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart3.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gif
BraidPart2.gifBraidPart3.gifBraidPart3.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart3.gifBraidPart4.gifBraidPart3.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart3.gif
BraidPart0.gifBraidPart4.gifBraidPart4.gifBraidPart3.gifBraidPart0.gifBraidPart3.gifBraidPart0.gifBraidPart1.gifBraidPart4.gifBraidPart1.gifBraidPart4.gifBraidPart3.gifBraidPart0.gifBraidPart3.gifBraidPart4.gif
BraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart4.gifBraidPart3.gifBraidPart4.gifBraidPart3.gifBraidPart2.gifBraidPart0.gifBraidPart2.gifBraidPart1.gifBraidPart4.gifBraidPart1.gifBraidPart4.gifBraidPart0.gif
BraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart4.gifBraidPart3.gifBraidPart4.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart2.gifBraidPart1.gifBraidPart2.gifBraidPart0.gifBraidPart0.gif
BraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart4.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart2.gifBraidPart0.gifBraidPart0.gifBraidPart0.gif
A Morse Link Presentation L11n368 ML.gif

Polynomial invariants

Multivariable Alexander Polynomial (in u, v, w, ...) -\frac{(t(1)+1) (t(2)-1) (t(3)-1)^2 (t(3)+1)}{\sqrt{t(1)} \sqrt{t(2)} t(3)^{3/2}} (db)
Jones polynomial 1- q^{-1} +3 q^{-2} - q^{-3} + q^{-4} +2 q^{-7} -2 q^{-8} +2 q^{-9} - q^{-10} (db)
Signature -3 (db)
HOMFLY-PT polynomial -a^{10}+2 a^8 z^2+2 a^8+a^6 z^2+a^6 z^{-2} +a^6-a^4 z^6-5 a^4 z^4-7 a^4 z^2-2 a^4 z^{-2} -6 a^4+a^2 z^4+4 a^2 z^2+a^2 z^{-2} +4 a^2 (db)
Kauffman polynomial a^{11} z^7-5 a^{11} z^5+6 a^{11} z^3-2 a^{11} z+2 a^{10} z^8-11 a^{10} z^6+16 a^{10} z^4-9 a^{10} z^2+2 a^{10}+a^9 z^9-4 a^9 z^7-2 a^9 z^5+11 a^9 z^3-4 a^9 z+3 a^8 z^8-20 a^8 z^6+36 a^8 z^4-22 a^8 z^2+5 a^8+a^7 z^9-6 a^7 z^7+7 a^7 z^5-a^7 z^3+a^6 z^8-7 a^6 z^6+11 a^6 z^4-6 a^6 z^2+a^6 z^{-2} -a^6+a^5 z^5-8 a^5 z^3+8 a^5 z-2 a^5 z^{-1} +3 a^4 z^6-14 a^4 z^4+15 a^4 z^2+2 a^4 z^{-2} -8 a^4+a^3 z^7-3 a^3 z^5-2 a^3 z^3+6 a^3 z-2 a^3 z^{-1} +a^2 z^6-5 a^2 z^4+8 a^2 z^2+a^2 z^{-2} -5 a^2 (db)

Khovanov Homology

The coefficients of the monomials t^rq^j are shown, along with their alternating sums \chi (fixed j, alternation over r).   
\ r
  \  
j \
-9-8-7-6-5-4-3-2-1012χ
1           11
-1            0
-3         31 2
-5       112  2
-7      121   0
-9     221    1
-11    242     0
-13   112      2
-15  121       0
-17 11         0
-19 1          1
-211           -1
Integral Khovanov Homology

(db, data source)

  
\dim{\mathcal G}_{2r+i}\operatorname{KH}^r_{\mathbb Z} i=-5 i=-3 i=-1
r=-9 {\mathbb Z}
r=-8 {\mathbb Z}\oplus{\mathbb Z}_2 {\mathbb Z}
r=-7 {\mathbb Z}\oplus{\mathbb Z}_2 {\mathbb Z}
r=-6 {\mathbb Z}^{2}\oplus{\mathbb Z}_2 {\mathbb Z}
r=-5 {\mathbb Z} {\mathbb Z}\oplus{\mathbb Z}_2^{2} {\mathbb Z}^{2}
r=-4 {\mathbb Z}^{2}\oplus{\mathbb Z}_2 {\mathbb Z}^{4}\oplus{\mathbb Z}_2 {\mathbb Z}^{2}
r=-3 {\mathbb Z}^{2}\oplus{\mathbb Z}_2 {\mathbb Z}^{2}\oplus{\mathbb Z}_2 {\mathbb Z}
r=-2 {\mathbb Z}\oplus{\mathbb Z}_2^{2} {\mathbb Z}^{2}\oplus{\mathbb Z}_2 {\mathbb Z}
r=-1 {\mathbb Z}\oplus{\mathbb Z}_2 {\mathbb Z}
r=0 {\mathbb Z}^{2}\oplus{\mathbb Z}_2 {\mathbb Z}^{3}
r=1 {\mathbb Z}
r=2 {\mathbb Z}_2 {\mathbb Z}

Computer Talk

Much of the above data can be recomputed by Mathematica using the package KnotTheory`. See A Sample KnotTheory` Session.

Modifying This Page

Read me first: Modifying Knot Pages

See/edit the Link Page master template (intermediate).

See/edit the Link_Splice_Base (expert).

Back to the top.

L11n367.gif

L11n367

L11n369.gif

L11n369