From Knot Atlas
Jump to: navigation, search






(Knotscape image)
See the full Thistlethwaite Link Table (up to 11 crossings).

Visit L11n371 at Knotilus!

Link Presentations

[edit Notes on L11n371's Link Presentations]

Planar diagram presentation X6172 X3,10,4,11 X7,14,8,15 X15,22,16,17 X17,16,18,5 X9,19,10,18 X13,21,14,20 X19,13,20,12 X21,9,22,8 X2536 X11,4,12,1
Gauss code {1, -10, -2, 11}, {-5, 6, -8, 7, -9, 4}, {10, -1, -3, 9, -6, 2, -11, 8, -7, 3, -4, 5}
A Braid Representative
A Morse Link Presentation L11n371 ML.gif

Polynomial invariants

Multivariable Alexander Polynomial (in u, v, w, ...) -\frac{(t(3)-1) (t(1) t(3)+1) (t(3) t(2)-t(2)+1) (t(2) t(3)-t(3)+1)}{\sqrt{t(1)} t(2) t(3)^2} (db)
Jones polynomial q^3-3 q^2+7 q-9+12 q^{-1} -12 q^{-2} +12 q^{-3} -8 q^{-4} +6 q^{-5} -2 q^{-6} (db)
Signature -2 (db)
HOMFLY-PT polynomial -a^6 z^2-2 a^6+a^4 z^6+5 a^4 z^4+10 a^4 z^2+a^4 z^{-2} +8 a^4-a^2 z^8-6 a^2 z^6-14 a^2 z^4-17 a^2 z^2-2 a^2 z^{-2} -11 a^2+z^6+4 z^4+6 z^2+ z^{-2} +5 (db)
Kauffman polynomial 3 a^7 z^3-2 a^7 z+a^6 z^6+6 a^6 z^4-8 a^6 z^2+2 a^6+5 a^5 z^7-11 a^5 z^5+17 a^5 z^3-7 a^5 z+6 a^4 z^8-18 a^4 z^6+33 a^4 z^4-28 a^4 z^2-a^4 z^{-2} +10 a^4+2 a^3 z^9+5 a^3 z^7-24 a^3 z^5+30 a^3 z^3-14 a^3 z+2 a^3 z^{-1} +10 a^2 z^8-29 a^2 z^6+z^6 a^{-2} +33 a^2 z^4-3 z^4 a^{-2} -26 a^2 z^2+3 z^2 a^{-2} -2 a^2 z^{-2} +12 a^2- a^{-2} +2 a z^9+3 a z^7+3 z^7 a^{-1} -21 a z^5-8 z^5 a^{-1} +21 a z^3+5 z^3 a^{-1} -10 a z-z a^{-1} +2 a z^{-1} +4 z^8-9 z^6+3 z^4-3 z^2- z^{-2} +4 (db)

Khovanov Homology

The coefficients of the monomials t^rq^j are shown, along with their alternating sums \chi (fixed j, alternation over r).   
\ r
j \
7         11
5        2 -2
3       51 4
1      53  -2
-1     74   3
-3    66    0
-5   66     0
-7  37      4
-9 35       -2
-11 4        4
-132         -2
Integral Khovanov Homology

(db, data source)

\dim{\mathcal G}_{2r+i}\operatorname{KH}^r_{\mathbb Z} i=-3 i=-1
r=-5 {\mathbb Z}^{2}
r=-4 {\mathbb Z}^{4}\oplus{\mathbb Z}_2^{2} {\mathbb Z}^{3}
r=-3 {\mathbb Z}^{5}\oplus{\mathbb Z}_2^{3} {\mathbb Z}^{3}
r=-2 {\mathbb Z}^{7}\oplus{\mathbb Z}_2^{5} {\mathbb Z}^{6}
r=-1 {\mathbb Z}^{6}\oplus{\mathbb Z}_2^{6} {\mathbb Z}^{6}
r=0 {\mathbb Z}^{6}\oplus{\mathbb Z}_2^{6} {\mathbb Z}^{7}
r=1 {\mathbb Z}^{4}\oplus{\mathbb Z}_2^{5} {\mathbb Z}^{5}
r=2 {\mathbb Z}^{3}\oplus{\mathbb Z}_2^{4} {\mathbb Z}^{5}
r=3 {\mathbb Z}\oplus{\mathbb Z}_2^{2} {\mathbb Z}^{2}
r=4 {\mathbb Z}_2 {\mathbb Z}

Computer Talk

Much of the above data can be recomputed by Mathematica using the package KnotTheory`. See A Sample KnotTheory` Session.

Modifying This Page

Read me first: Modifying Knot Pages

See/edit the Link Page master template (intermediate).

See/edit the Link_Splice_Base (expert).

Back to the top.