L11n375

From Knot Atlas
Jump to: navigation, search

L11n374.gif

L11n374

L11n376.gif

L11n376

Contents

L11n375.gif
(Knotscape image)
See the full Thistlethwaite Link Table (up to 11 crossings).

Visit L11n375 at Knotilus!


Link Presentations

[edit Notes on L11n375's Link Presentations]

Planar diagram presentation X6172 X14,7,15,8 X4,15,1,16 X5,10,6,11 X3849 X17,22,18,19 X11,20,12,21 X19,12,20,13 X21,18,22,5 X9,16,10,17 X13,2,14,3
Gauss code {1, 11, -5, -3}, {-8, 7, -9, 6}, {-4, -1, 2, 5, -10, 4, -7, 8, -11, -2, 3, 10, -6, 9}
A Braid Representative
BraidPart1.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart3.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gif
BraidPart2.gifBraidPart1.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart3.gifBraidPart4.gifBraidPart0.gifBraidPart0.gifBraidPart1.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart3.gifBraidPart0.gif
BraidPart0.gifBraidPart2.gifBraidPart1.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart3.gifBraidPart4.gifBraidPart3.gifBraidPart0.gifBraidPart3.gifBraidPart2.gifBraidPart1.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart3.gifBraidPart4.gifBraidPart3.gif
BraidPart0.gifBraidPart0.gifBraidPart2.gifBraidPart3.gifBraidPart0.gifBraidPart3.gifBraidPart4.gifBraidPart3.gifBraidPart4.gifBraidPart3.gifBraidPart4.gifBraidPart3.gifBraidPart2.gifBraidPart3.gifBraidPart0.gifBraidPart3.gifBraidPart4.gifBraidPart3.gifBraidPart4.gif
BraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart4.gifBraidPart1.gifBraidPart4.gifBraidPart0.gifBraidPart4.gifBraidPart0.gifBraidPart4.gifBraidPart0.gifBraidPart4.gifBraidPart0.gifBraidPart4.gifBraidPart3.gifBraidPart4.gifBraidPart0.gifBraidPart4.gifBraidPart0.gif
BraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart2.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart4.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gif
A Morse Link Presentation L11n375 ML.gif

Polynomial invariants

Multivariable Alexander Polynomial (in u, v, w, ...) \frac{(t(3)-1) \left(t(1) t(3)^4-t(1) t(3)^3+2 t(1) t(2) t(3)^3-t(2) t(3)+2 t(3)+t(2)\right)}{\sqrt{t(1)} \sqrt{t(2)} t(3)^{5/2}} (db)
Jones polynomial  q^{-3} -2 q^{-4} +4 q^{-5} -3 q^{-6} +6 q^{-7} -5 q^{-8} +5 q^{-9} -3 q^{-10} +2 q^{-11} - q^{-12} (db)
Signature -6 (db)
HOMFLY-PT polynomial -a^{14} z^{-2} +a^{12} z^2+4 a^{12} z^{-2} +6 a^{12}-3 a^{10} z^4-14 a^{10} z^2-5 a^{10} z^{-2} -15 a^{10}+2 a^8 z^6+10 a^8 z^4+14 a^8 z^2+2 a^8 z^{-2} +8 a^8+a^6 z^6+4 a^6 z^4+3 a^6 z^2+a^6 (db)
Kauffman polynomial z^3 a^{15}-2 z a^{15}+a^{15} z^{-1} +2 z^4 a^{14}-4 z^2 a^{14}-a^{14} z^{-2} +2 a^{14}+z^7 a^{13}-5 z^5 a^{13}+14 z^3 a^{13}-15 z a^{13}+5 a^{13} z^{-1} +2 z^8 a^{12}-11 z^6 a^{12}+25 z^4 a^{12}-25 z^2 a^{12}-4 a^{12} z^{-2} +14 a^{12}+z^9 a^{11}-z^7 a^{11}-14 z^5 a^{11}+40 z^3 a^{11}-33 z a^{11}+9 a^{11} z^{-1} +5 z^8 a^{10}-26 z^6 a^{10}+47 z^4 a^{10}-40 z^2 a^{10}-5 a^{10} z^{-2} +21 a^{10}+z^9 a^9-16 z^5 a^9+30 z^3 a^9-20 z a^9+5 a^9 z^{-1} +3 z^8 a^8-14 z^6 a^8+20 z^4 a^8-16 z^2 a^8-2 a^8 z^{-2} +9 a^8+2 z^7 a^7-7 z^5 a^7+3 z^3 a^7+z^6 a^6-4 z^4 a^6+3 z^2 a^6-a^6 (db)

Khovanov Homology

The coefficients of the monomials t^rq^j are shown, along with their alternating sums \chi (fixed j, alternation over r).   
\ r
  \  
j \
-9-8-7-6-5-4-3-2-10χ
-5         11
-7        21-1
-9       2  2
-11     122  1
-13    162   3
-15    23    1
-17   44     0
-19 112      2
-21 23       -1
-23 1        1
-251         -1
Integral Khovanov Homology

(db, data source)

  
\dim{\mathcal G}_{2r+i}\operatorname{KH}^r_{\mathbb Z} i=-7 i=-5 i=-3
r=-9 {\mathbb Z}
r=-8 {\mathbb Z}\oplus{\mathbb Z}_2 {\mathbb Z}^{2} {\mathbb Z}
r=-7 {\mathbb Z}^{3}\oplus{\mathbb Z}_2 {\mathbb Z}
r=-6 {\mathbb Z}^{2}\oplus{\mathbb Z}_2^{3} {\mathbb Z}^{4}
r=-5 {\mathbb Z}^{4}\oplus{\mathbb Z}_2^{2} {\mathbb Z}^{2}\oplus{\mathbb Z}_2 {\mathbb Z}
r=-4 {\mathbb Z}^{3}\oplus{\mathbb Z}_2^{4} {\mathbb Z}^{6} {\mathbb Z}
r=-3 {\mathbb Z}^{2}\oplus{\mathbb Z}_2^{2} {\mathbb Z}^{2}
r=-2 {\mathbb Z}^{2}\oplus{\mathbb Z}_2^{2} {\mathbb Z}^{2}
r=-1 {\mathbb Z}_2^{2} {\mathbb Z}^{2}
r=0 {\mathbb Z} {\mathbb Z}

Computer Talk

Much of the above data can be recomputed by Mathematica using the package KnotTheory`. See A Sample KnotTheory` Session.

Modifying This Page

Read me first: Modifying Knot Pages

See/edit the Link Page master template (intermediate).

See/edit the Link_Splice_Base (expert).

Back to the top.

L11n374.gif

L11n374

L11n376.gif

L11n376